54 research outputs found

    A custom designed density estimation method for light transport

    No full text
    We present a new Monte Carlo method for solving the global illumination problem in environments with general geometry descriptions and light emission and scattering properties. Current Monte Carlo global illumination algorithms are based on generic density estimation techniques that do not take into account any knowledge about the nature of the data points --- light and potential particle hit points --- from which a global illumination solution is to be reconstructed. We propose a novel estimator, especially designed for solving linear integral equations such as the rendering equation. The resulting single-pass global illumination algorithm promises to combine the flexibility and robustness of bi-directional path tracing with the efficiency of algorithms such as photon mapping

    Synthesis of Compositional Animations from Textual Descriptions

    Get PDF

    An analysis of eye-tracking data in foveated ray tracing

    Get PDF
    We present an analysis of eye tracking data produced during a quality-focused user study of our own foveated ray tracing method. Generally, foveated rendering serves the purpose of adapting actual rendering methods to a user’s gaze. This leads to performance improvements which also allow for the use of methods like ray tracing, which would be computationally too expensive otherwise, in fields like virtual reality (VR), where high rendering performance is important to achieve immersion, or fields like scientific and information visualization, where large amounts of data may hinder real-time rendering capabilities. We provide an overview of our rendering system itself as well as information about the data we collected during the user study, based on fixation tasks to be fulfilled during flights through virtual scenes displayed on a head-mounted display (HMD). We analyze the tracking data regarding its precision and take a closer look at the accuracy achieved by participants when focusing the fixation targets. This information is then put into context with the quality ratings given by the users, leading to a surprising relation between fixation accuracy and quality ratings.We would like to thank NVIDIA for providing us with two Quadro K6000 graphics cards for the user study, the Intel Visual Computing Institute, the European Union (EU) for the co-funding as part of the Dreamspace project, the German Federal Ministry for Economic Affairs and Energy (BMWi) for funding the MATEDIS ZIM project (grant no KF2644109) and the Federal Ministry of Education and Research (BMBF) for funding the project OLIVE

    The European language technology landscape in 2020 : language-centric and human-centric AI for cross-cultural communication in multilingual Europe

    Get PDF
    Multilingualism is a cultural cornerstone of Europe and firmly anchored in the European treaties including full language equality. However, language barriers impacting business, cross-lingual and cross-cultural communication are still omnipresent. Language Technologies (LTs) are a powerful means to break down these barriers. While the last decade has seen various initiatives that created a multitude of approaches and technologies tailored to Europe’s specific needs, there is still an immense level of fragmentation. At the same time, AI has become an increasingly important concept in the European Information and Communication Technology area. For a few years now, AI – including many opportunities, synergies but also misconceptions – has been overshadowing every other topic. We present an overview of the European LT landscape, describing funding programmes, activities, actions and challenges in the different countries with regard to LT, including the current state of play in industry and the LT market. We present a brief overview of the main LT-related activities on the EU level in the last ten years and develop strategic guidance with regard to four key dimensions

    Towards a living earth simulator

    Get PDF
    The Living Earth Simulator (LES) is one of the core components of the FuturICT architecture. It will work as a federation of methods, tools, techniques and facilities supporting all of the FuturICT simulation-related activities to allow and encourage interactive exploration and understanding of societal issues. Society-relevant problems will be targeted by leaning on approaches based on complex systems theories and data science in tight interaction with the other components of FuturICT. The LES will evaluate and provide answers to realworld questions by taking into account multiple scenarios. It will build on present approaches such as agent-based simulation and modeling, multiscale modelling, statistical inference, and data mining, moving beyond disciplinary borders to achieve a new perspective on complex social systems. © The Author(s) 2012

    8th Eurographics Workshop on Rendering Techniques '97

    No full text

    Vision-an architecture for global illumination calculations

    No full text

    Realtime Caustics using Distributed Photon Mapping

    No full text
    With the advancements in realtime ray tracing and new global illumination algorithms we are now able to render the most important illumination effects at interactive rates. One of the major remaining issues is the fast and efficient simulation of caustic illumination, such as e.g. the illumination from a car headlight. The photon mapping algorithm is a simple and robust approach that generates high-quality results and is the preferred algorithm for computing caustic illumination. However, photon mapping has a number of properties that make it rather slow on today s processors. Photon mapping has also been notoriously difficult to parallelize efficiently. In this paper, we present a detailed analysis of the performance issues of photon mapping together with signifi- cant performance improvements for all aspects of the photon mapping technique. The solution forms a complete framework for realtime photon mapping that efficiently combines realtime ray tracing, optimized and improved photon mapping algorithms, and efficient parallelization across commodity PCs. The presented system achieves realtime photon mapping performance of up to 22 frames per second on non-trivial scenes, while still allowing for interactively updating all aspects of the scene, including lighting, material properties, and geometry
    corecore