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Abstract

“How can we animate 3D-characters from a movie
script or move robots by simply telling them what we would
like them to do?” “How unstructured and complex can
we make a sentence and still generate plausible movements
from it?” These are questions that need to be answered
in the long-run, as the field is still in its infancy. Inspired
by these problems, we present a new technique for gener-
ating compositional actions, which handles complex input
sentences. Our output is a 3D pose sequence depicting the
actions in the input sentence. We propose a hierarchical
two-stream sequential model to explore a finer joint-level
mapping between natural language sentences and 3D pose
sequences corresponding to the given motion. We learn two
manifold representations of the motion, one each for the up-
per body and the lower body movements. Our model can
generate plausible pose sequences for short sentences de-
scribing single actions as well as long complex sentences
describing multiple sequential and compositional actions.
We evaluate our proposed model on the publicly avail-
able KIT Motion-Language Dataset containing 3D pose
data with human-annotated sentences. Experimental results
show that our model advances the state-of-the-art on text-
based motion synthesis in objective evaluations by a margin
of 50%. Qualitative evaluations based on a user study in-
dicate that our synthesized motions are perceived to be the
closest to the ground-truth motion captures for both short
and compositional sentences.

1. Introduction
Manually creating realistic animation of humans per-

forming complex motions is always a challenge. Motion
synthesis based on textual descriptions substantially sim-

*Corresponding Author: anindita.ghosh@dfki.de.

Figure 1: Overview of our proposed method to generate mo-
tion from complex natural language sentences.1

plifies this task and has a wide range of applications, in-
cluding language-based task planning for robotics and vir-
tual assistants [3], designing instructional videos, creating
public safety demonstrations [40], and visualizing movie
scripts [27]. However, mapping natural language text de-
scriptions to 3D pose sequences for human motions is non-
trivial. The input texts may describe single actions with se-
quential information, e.g., “a person walks four steps for-
ward”, or may not correspond to the discrete time steps
of the pose sequences to be generated, such as for com-
positional actions, e.g., “a person is spinning around while
walking”. This necessitates a machine-level understanding
of the syntax and the semantics of the text descriptions to
generate the desired motions [4]. While translating a sen-
tence to a pose sequence, we need to identify the different
parts of speech in the given sentence and how they impact
the output motion. A verb in the sentence describes the type
of action, whereas an adverb may provide information on
the direction, place, frequency, and other circumstances of
the denoted action. These need to be mapped into the gen-
erated pose sequence in the correct order, laying out addi-
tional challenges for motion modeling systems.

Existing text-to-motion mapping methods either gener-
ate motions from sentences describing one action only [53]
or produce sub-par motions from descriptions of composi-

1Code and additional resources available at
https://github.com/anindita127/Complextext2animation

1396



tional actions [4]. They fail to translate the long-range de-
pendencies and correlations in complex sentences and do
not generalize well to motions outside of locomotion [4].

We propose a method to handle complex sentences,
meaning sentences that describe a person performing mul-
tiple actions either sequentially or simultaneously. For ex-
ample, the input sentence “a person is stretching his arms,
taking them down, walking forwards for four steps and rais-
ing them again” describes multiple sequential actions such
as raising the arms, taking down the arms, and walking, as
well as the direction and number of steps for the action. To
the best of our knowledge, our method is the first to syn-
thesize plausible motions from such varieties of complex
textual descriptions, which is an essential next step to im-
prove the practical applicability of text-based motion syn-
thesis systems. To achieve this goal, we propose a hierar-
chical, two-stream, sequential network that synthesizes 3D
pose sequences of human motions by parsing the long-range
dependencies of complex sentences, while preserving the
essential details of the described motions. Our output is
a sequence of 3D poses corresponding to the motions de-
scribed in the sentence (Fig. 1). Our main contributions in
this paper are as follows:

Hierarchical joint embedding space. In contrast to
JL2P [4], we separate our intermediate pose embeddings
into two embeddings, one each for the upper body and
the lower body. We further separate these embeddings hi-
erarchically to limb embeddings. Our model learns the
semantic variations in a sentence ascribing speed, direc-
tion, frequency of motion, and maps them to temporal pose
sequences by decoding the combined embeddings. This
results in the synthesis of pose sequences that correlate
strongly with the descriptions given in the input sentences.

Sequential two-stream network. We introduce a se-
quential two-stream network with an autoencoder architec-
ture, with different layers focusing on different parts of the
body, and combine them hierarchically to two representa-
tions for the pose in the manifold space, one for the upper
body and the other for the lower body. This reduces the
smoothing of upper body movements (such as wrist move-
ments for playing violin) in the generated poses and makes
the synthesized motion more robust.

Contextualized BERT embeddings. In contrast to pre-
vious approaches [4, 53], which do not use any contextu-
alized language model, we use the state-of-the-art BERT
model [16] with handpicked word feature embeddings to
improve text understanding. The BERT model is pre-
trained on a large corpus of unlabelled text including the
entire Wikipedia and the Book Corpus [73].

Additional loss terms and pose discriminator. We add
a set of loss terms to the network training to better condition
the learning of the velocity and the motion manifold [36].
We also add a pose discriminator with an adversarial loss to

further improve the plausibility of the synthesized motions.
Experimental results show that our method outperforms

the baseline methods of JL2P [4] and Lin et al. [44] sig-
nificantly on both the quantitative metrics we discuss in
Sec. 4.3 and on qualitative evaluations.

2. Related Work
This section briefly summarizes prior works in the re-

lated areas of data-driven human motion modeling and text-
based motion synthesis.

2.1. Human Motion modeling

Data-driven motion synthesis is widely used to gener-
ate realistic human motion for digital human models [33,
31, 17]. Different strategies have been implemented over
the years using temporal convolutional neural networks [14,
41, 10], graph convolutional networks [5, 50] and recur-
rent neural networks [47, 26, 68, 38]. Pose forecasting
attempts to generate short [20, 51] and long-term mo-
tions [23, 43, 62] by predicting future sequence of poses
given their history. Prior works have encoded the observed
information of poses to latent variables and perform pre-
dictions based on the latent variables [36, 35]. Holden et
al. [34] used a feed-forward network to map high-level pa-
rameters to character movement. Xu et al. [70] proposed a
hierarchical style transfer-based motion generation, where
they explored a self-supervised learning method to decom-
pose a long-range generation task hierarchically. Aristi-
dou et al. [6] decomposed the whole motion sequences into
short-term movements defining motion words and clustered
them in a high-dimensional feature space. Generative ad-
versarial networks [24] have also gained considerable at-
tention in the field of unsupervised learning-based motion
prediction [8, 39]. Li et al. [42] used a convolutional dis-
criminator to model human motion sequences to predict re-
alistic poses. Gui et al. [25] proposed the adversarial geom-
etry aware encoder-decoder (AGED) framework, where two
global recurrent discriminators distinguish the predicted
pose from the ground-truth. Cui et al. [15] proposed a
generative model for pose modeling based on graph net-
works and adversarial learning. Other works include pixel-
level motion predictions with human pose as an intermedi-
ate variable [66, 67], and forecasting locomotion trajecto-
ries [29, 28, 46]. Researchers have also explored audio-,
speech-, and image-conditioned pose forecasting[7]. For
instance, Ferreira et al. [19] explored generating skeleton
pose sequences for dance movements from audio, Chao et
al. [9, 69] predicted pose sequences from static images.
Ahuja [2] linked pose prediction with speech and audio.
Takeuchi et al.[61] tackled speech conditioned forecasting
for only the upper body, modeling the non-verbal behaviors
such as head nods, pose switches, and hand waving for a
character without providing knowledge on the character’s
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next movements. Chiu et al. [11] rely solely on the history
of poses to predict what motion will follow.

2.2. Text-based Motion Synthesis

A subset of prior works have opted to train deep learn-
ing models to translate linguistic instructions to actions for
virtual agents [30, 32, 48, 72]. Takano et al. [60, 57] de-
veloped a mapping between human motion and word la-
bels using Hidden Markov Models. Takano et al. also
used statistical methods [58, 59] using bigram models for
natural languages to generate motions. Yamada et al. [71]
used separate autoencoders for text and animations with a
shared latent space to generate animations from text. Ahn
et al. [1] generated actions from natural language descrip-
tions for video data. However, their method only applies
to upper-body joints (neck, shoulders, elbows, and wrist
joints) with a static root. More recent methods use RNN
based sequential networks to map text inputs to motion.
Plappert et al. [53] proposed a bidirectional RNN network
to map a text input to a series of Gaussian distributions rep-
resenting the joint angles of the skeleton. However, their
input sequence is encoded into a single one-hot vector that
cannot scale as the number of sequences increases. Lin et
al. [44] used an autoencoder architecture trained on mocap
data without language descriptions first, and then used an
RNN to map descriptions into these motion representations.
JL2P [4] learned a joint embedding space for both pose and
language using a curriculum learning approach. Training a
model jointly with both pose and sentence inputs improves
the generative power of the model. However, these methods
are limited to synthesizing motion from simple sentences.
Our model, by contrast, handles long sentences describing
multiple actions.

3. Proposed Method
We train our model end-to-end with a hierarchical two-

stream pose autoencoder, a sentence encoder, and pose dis-
criminator (Fig. 2). Our model learns a joint-embedding be-
tween the natural language and the poses of the upper body
and the lower body. Our input motion P = [P0, . . . , PT−1]
is a sequence of T poses, where Pt ∈ RJ×3 is the pose at
the tth time step, consisting of the (x, y, z) coordinates of
the J joints in the pose. Our hierarchical two-stream pose
encoder pe encodes the ground-truth pose sequence P into
two manifold vectors,

pe (P ) = (Zp
ub, Z

p
lb) , (1)

where Zp
ub, Z

p
lb ∈ Rh represent the features for the upper

body and the lower body, respectively, and h denotes the
dimension of the latent space.

Our input sentence S = [S1, S2, . . . , SW ] is a sequence
of W words converted to word embeddings S̃w using the

pre-trained BERT model [16]. S̃w ∈ RK represents the
word embedding vector of the wth word in the sentence and
K is the dimension of the word embedding vector. Our two-
stream sentence encoder se encodes the word embeddings
and maps them to two latent vectors in the latent space as,

se (S) = (Zs
ub, Z

s
lb) , (2)

where Zs
ub, Z

s
lb ∈ Rh represent the sentence embeddings

for the upper body and the lower body, respectively. Using
an appropriate loss (see Sec. 3.2), we ensure that (Zp

ub, Z
p
lb)

and (Zs
ub, Z

s
lb) lie close in the joint embedding space and

carry similar information.
Our hierarchical two-stream pose decoder de learns to

generate poses from these two manifold vectors. As an ini-
tial input, the pose decoder uses the initial pose P0 to gen-
erate the pose P̂0, and generate each subsequent pose P̂t+1

recursively using pose P̂t. P̂ ∈ RT×J×3 denotes a gener-
ated pose sequence. The output of our decoder module is
a sequence of T poses P̂ p ∈ RT×J×3 generated from the
pose embeddings, and P̂ s ∈ RT×J×3 generated from the
language embeddings as

P̂ p = de (Zp
ub, Z

p
lb) (3)

P̂ s = de (Zs
ub, Z

s
lb) . (4)

We use a pose prediction loss term to ensure that P̂ p and
P̂ s are close to each other (Sec. 3.2). P̂ = P̂ s is our final
output pose sequence for a given sentence.

3.1. Network Architecture

We describe the three main modules in our network, the
two-stream hierarchical pose encoder, the two-stream sen-
tence encoder and the two-stream hierarchical pose decoder.

3.1.1 Two-Stream Hierarchical Pose Encoder

We structure the pose encoder such that it learns features
based on five major parts of the body, and combine those
features hierarchically. Following Du et al. [18], we de-
compose the human skeleton into five major parts as the left
arm, right arm, trunk, left leg, and right leg. Our hierarchi-
cal pose encoder, as shown in Fig. 2, encodes these five parts
using five linear layers with output dimension h1. We com-
bine the trunk representation with that of the left arm, right
arm, left leg, and right leg and pass them through another set
of linear layers to obtain combined representations of (left
arm, trunk), (right arm, trunk), (left leg, trunk), and (right
leg, trunk) each of dimension h2. Two separate GRUs [12]
encode the combined representation for the arms with the
trunk and the legs with the trunk respectively, thus creating
manifold representations for the upper body, Zp

ub ∈ Rh, and
for the lower body, Zp

lb ∈ Rh. The two GRUs then output
the two manifold representations of dimension h.
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Figure 2: Structure of our hierarchical two-stream model with our pose discriminator (top right). The model learns a joint
embedding for both pose and language. The embedding has separate representations for the upper body and lower body
movements. We show the hierarchy of the pose decoder as Hier in the inset box (top center).

3.1.2 Two-Stream Sentence Encoder

To represent the text input, we use the pre-trained large-case
model of BERT [16] as a contextualized language model. It
comprises of 24 layers, each representing different linguis-
tic notions of syntax or semantics [13]. To find the layers
focused on local context, e.g., adverbs of a verb [63], we
use the attention visualization tool [65] with randomly se-
lected samples of the KIT Motion Language dataset [52].
Thus, we select the layers 12 (corresponding to subjects),
13 (adverbs), 14 (verbs) and 15 (prepositional objects) and
concatenate the hidden states of these layers to represent the
corresponding words. Formally, S̃w ∈ RK represents the
word embedding vector of the wth word in the sentence S,
and K is the dimension of the word embedding vector used.
Our Sentence encoder se uses Long-Short Term Memory
units (LSTMs) [54] to capture the long-range dependencies
of complex sentences. We input the word embeddings to a
two-layer LSTM, which generates

Zs = LSTM
(
S̃w

)
= [Zs

ub, Z
s
lb] , (5)

where Zs ∈ R2h is the latent embedding of the whole sen-
tence, with S̃w = BERT (Sw). We choose the first half
of this embedding as Zs

ub ∈ Rh to represent the upper body
and the second half as Zs

lb ∈ Rh to represent the lower body.

3.1.3 Two-Stream Hierarchical Pose Decoder

We can conceptually unfold our pose decoder as a series of
T hierarchical decoder units, each constructing the output
pose P̂t, ∀t = 0, . . . , T time steps in a recurrent fashion by
taking in the generated pose at the corresponding previous
time step. We add a residual connection between the inputs
and the outputs of the individual decoder units. Each de-
coder unit consists of two GRUs, and a Hier unit (inset box
in Fig. 2) consisting of a series of linear layers in a hierar-
chical structure mirroring that of the pose encoder. Condi-

tioned by the latent space vector representing the previous
frames, the Hier unit outputs the reconstructed pose P̂t+1 at
the (t+ 1)

th frame given the previous pose P̂t.

3.2. Optimizing the Training Procedure

We train our model end-to-end with a hierarchical two-
stream pose autoencoder along with a sentence encoder as
shown in Fig. 2. Our model learns a joint embedding space
between the natural language and the poses of the upper
body and the lower body. Our decoder is trained with the
tuples (Zp

ub, Z
p
lb) obtained from pe to generate the pose se-

quence P̂ p, and (Zs
ub, Z

s
lb), obtained from se to generate the

pose sequence P̂ = P̂ s.
Loss functions. We use the smooth ℓ1 loss to train our

model. The smooth ℓ1 loss is less sensitive to outliers than
the smoother ℓ2 loss, and more stable than the ℓ1 loss as it
is differentiable near x = 0 for all x ∈ R [4]. We use the
following five losses to train our model:

• Pose Prediction loss. It minimizes the difference be-
tween the input ground-truth motion P and the pre-
dicted motions P̂ = P̂ s and P̂ p. We measure it as,

LR = L
(
P̂ s, P

)
+ L

(
P̂ p, P

)
, (6)

where L denotes the Smooth ℓ1 Loss between the two
terms.

• Manifold reconstruction loss. This encourages a re-
ciprocal mapping between the generated motions and
the manifold representations to improve the manifold
space [36]. We reconstruct the manifold representa-
tions from the generated poses as Ẑp

ub = pe
(
P̂
)

and

Ẑp
lb = pe

(
P̂
)

, and compare them with the manifold
representations obtained from input pose sequence.
We compute the loss as,

LM = L
(
Ẑp
ub, Z

p
ub

)
+ L

(
Ẑp
lb, Z

p
lb

)
. (7)
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• Velocity reconstruction loss. We minimize the differ-
ence between the velocity of the reconstructed motion(
P̂vel

)
and the velocity of the input motion (Pvel).

We compute the velocity of the tth frame of a pose P
as Pvel (t) = P(t+1) − P(t). We compute LV as ,

LV = L
(
P̂vel, Pvel

)
. (8)

• Embedding similarity loss. This loss ensures that the
manifold representations, Zs

ub and Zs
lb, generated by

the sentence encoder, are close to the manifold repre-
sentations Zp

ub and Zp
lb generated by the pose encoder.

We measure it as,

LE = L (Zp
ub, Z

s
ub) + L (Zp

lb, Z
s
lb) . (9)

• Adversarial loss. We further employ a binary cross-
entropy discriminator D to distinguish between the
real and generated poses. We compute the correspond-
ing discriminator and generator losses as,

LD = L2

(
D

(
P̂
)
, 0
)
+ L2 (D (P ) , 1) (10)

LG = L2

(
D

(
P̂
)
, 1
)
, (11)

where L2 denotes the Binary Cross Entropy loss, and
the generator is the decoder of our autoencoder.

We train our model end-to-end with the pose autoen-
coder, the sentence encoder and the discriminator modules
on a weighted sum of these loss terms as,

min
pe,se,de

(LR + λMLM + λV Lv + λELE + λGLG)

min
D

(λGLD) , (12)

where λM = 0.001, λV = 0.1, λE = 0.1 and λG = 0.001
are weight parameters, obtained experimentally.

4. Experiments
This section describes the dataset we use for our exper-

iments and reports the quantitative and qualitative perfor-
mances of our method. We also highlight the benefits of the
different components of our method via ablation studies.

4.1. Dataset

We evaluate our model on the publicly available KIT
Motion-Language Dataset [52], which consists of 3,911
recordings of human whole-body motion in the Master Mo-
tor Map representation [64, 45], and natural language de-
scriptions corresponding to each motion. It has a total of
6,278 annotations in the English language, with each mo-
tion recordings having one or multiple annotations describ-
ing the task. The sentences range from describing simple

actions such as walking forwards or waving the hand to
describing motions with complicated movements such as
waltzing. Moreover, there are longer, more descriptive sen-
tences describing a sequence of multiple actions, e.g., “A
human walks forwards two steps, pivots 180 degrees and
walks two steps back to where they started.” We randomly
split the dataset in the ratio of 0.6, 0.2, and 0.2 for our train-
ing, validation, and test sets. For a fair comparison with
the baselines, we follow the steps of Lin et al. [44] and
JL2P [4] to sub-sample the motion sequences from 100 Hz
to 12.5 Hz, and pre-process the motion data. Following the
approach of Holden et al. [34], we use the character’s joint
positions with respect to the local coordinate frame and the
character’s trajectory of movement in the global coordinate
frame. We have the (x, y, z) coordinates of J = 21 joints,
and a separate dimension for representing the global trajec-
tory for the root joint.

4.2. Implementation Details

We train our model for 350 epochs using the Adam Op-
timizer [37], which takes approximately 15 hours on an
NVIDIA Tesla V100 GPU. The dimensions of our hid-
den layers in the hierarchical autoencoder are h1 = 32,
h2 = 128 and h = 512. We used a batch size of 32 and a
learning rate of 0.001 with exponential decay. For training
the sentence encoder, we converted given sentences to word
embeddings of dimension K = 4,096 using the pre-trained
BERT-large-case model (Sec. 3.1.2). We encode these em-
beddings to a dimension of 1,024 through the sentence en-
coder, and split them to obtain two manifold representations
of dimension h = 512 each.

4.3. Quantitative Evaluation Metrics

To quantitatively evaluate the correctness of our motion,
we use the Average Position Error (APE). APE measures
the average positional difference for a joint j between the
generated and the ground-truth pose sequences as,

APE [j] =
1

NT

∑
n∈N

∑
t∈T

∥∥∥Pt [j]− P̂t [j]
∥∥∥
2
, (13)

where T is the total time steps and N is the total number of
data in our test dataset and [j] indicates the index.

Given our setting of natural language descriptions and
corresponding free-form movements, it is naturally diffi-
cult to find a quantitative measure that does justice to both
modalities. For example, in a walking setting, sentences
that do not mention any direction correspond to a wider va-
riety of plausible motions, while specifying a direction nar-
rows the possibilities. To account for such discrepancies,
we separate the APEs between the local joint positions and
the global root trajectory. The former corresponds to the er-
ror of the overall poses, while the latter corresponds to the
overall direction and trajectory of the motion.
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Figure 3: Comparison of consecutive motion frames from our method (top row) with Lin et al. [44] (middle row) and JL2P [4]
(bottom row) for the given sentences. Our method generates clear kicking and dancing motions in contrast to JL2P and Lin
et al., that shows no prominent movements. The perplexity values of the sentences are according to Plappert et al. [52].

However, the average position of each joint simply cor-
responds to a mean compared to the dataset. To under-
stand the full statistics of the overall distribution compared
to the dataset, we also compute the Average Variance Error
(AVE), which measures the difference of variances of indi-
vidual joints of the generated poses compared to the ground-
truth poses. We calculate the variance of an individual joint
j for a pose P with T time steps as,

σ [j] =
1

T − 1

∑
t∈T

(
Pt [j]− P̃ [j]

)2

, (14)

where P̃ [j] is the mean pose over T time steps for the joint
j. Calculating the variance for all joints of the ground-
truth poses and the generated poses, we use their root mean
square error as the AVE metric as follows:

AVE [j] =
1

N

∑
n∈N

∥σ [j]− σ̂ [j]∥2 , (15)

where σ refers to the ground-truth pose variance and σ̂
refers to generated pose variance.

However, even this measure does not account for any
information regarding the sentences or sentence encodings
themselves. Therefore, we propose a Content Encoding Er-
ror (CEE), which corresponds to the embedding similarity
loss LE in Eq. 9 by measuring the effectiveness of the em-
bedding space. We calculate CEE as the difference between
manifold representations Zp = [Zp

ub, Z
p
lb], obtained by en-

coding the input poses P through the pose encoder pe, and
the manifold representations Zs = [Zs

ub, Z
s
lb], obtained by

encoding the corresponding input sentences using the sen-
tence encoder se. We write it as,

CEE (S, P ) =
1

MN

∑
n∈N

∑
m∈M

∥Zs − Zp∥2 , (16)

where M is the number of features in the manifold repre-
sentation, and N is the total number of data. The idea is to
measure how well the joint embedding space correlates the
latent embeddings of poses with the latent embeddings of
the corresponding sentences.

To also account for style factors in the motion and
the sentences, we further propose a Style Encoding Error
(SEE). SEE compares a summary statistics of the sentence
embeddings Zs and the pose embeddings Zp to account
for general style information. We compute the Gram ma-
trix [22, 21] G on the corresponding embeddings:

Gs = Zs · Zs⊤ (17)

Gp = Zp · Zp⊤
. (18)

We compute SEE as

SEE (S, P ) =
1

MN

∑
n∈N

∑
m∈M

∥Gs −Gp∥2 , (19)

where M is the number of features in the manifold repre-
sentation and N is the total number of data.

4.4. Ablation Studies

We compare the performance of our model with the fol-
lowing four ablated versions:

• Ablation 1: Two-stream hierarchical model with-
out jointly training the embedding space (w/o JT).
Instead of end-to-end training of the model, we train
the hierarchical pose encoder and decoder first, using
the loss terms LR, LM , LV , LG and LD (Sec. 3.2). We
then train the model with the sentence encoder and the
pose decoder with the losses LR and LE . This indi-
cates that the model is not learning a joint embedding
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Figure 4: Plots showing the APE (left), AVE (middle), and CEE and SEE (right) in mm for our model compared to those
of JL2P [4] and Lin et al. [44]. Dark blue denotes our method, grey denotes JL2P and light blue denotes Lin et al. method.
Lower values are better. We see our method improves on the baselines by over 50% on all benchmarks.

space, but learns an embedding for poses first and then
fine-tunes it to map the sentences.

• Ablation 2: Hierarchical model without the two-
stream representation (w/o 2-St). We use a single
manifold representation for the whole body instead
of separating the upper and lower body and train the
model jointly on language and pose inputs.

• Ablation 3: Training the hierarchical two-stream
model without the extra losses (w/o Lo). We train
our model with only the pose prediction loss LR, dis-
carding all other loss terms described in Sec. 3.2.

• Ablation 4: Using a pre-trained language model
instead of selected layers of BERT (w/o BERT).
Instead of selecting layers of BERT as described in
Sec. 3.1.2, we use a pre-trained Word2Vec model [49],
to convert the input sentence into word embeddings,
as done in JL2P [4]. This ablation shows how BERT
as a contextualized language model helps focus on the
local context within a sentence.

4.5. User Study

To evaluate our ablation studies, we conduct a user study
to observe the subjective judgment of the quality of our gen-
erated motions compared to the quality of motions gener-
ated from the ablations described in Sec. 4.4. We asked 23
participants to rank 14 motion videos from the five meth-
ods and from the ground-truth motion-captures, based on
whether the motion corresponds to the input text, and by
the quality and naturalness of the motions. The five meth-
ods include our method and the four ablations of our model,
‘w/o JT’, ‘w/o 2-St’, ‘w/o Lo’, and ‘w/o BERT’. We quanti-
fied the user study with two preference scores, the first one
describing if the participants found the motions to corre-
spond to the input sentence (“yes/no”), and the second one
rating the overall quality of the motion in terms of natural-
ness (from 1 =“most natural” to 6 =“least natural”, which
we then scaled to [0, 1] and inverted). We observe that our
method has a preference score of ∼ 40% in both cases, sec-

ond only to the ground-truth motion, as seen in Fig. 5. 2

5. Results and Discussion

We compare our method with the baseline Joint Lan-
guage to Pose (JL2P) method [4], and the method of Lin
et al. [44]. We use the pre-trained models for both these
methods, made available in JL2P [4], to calculate the quan-
titative results. We compute all the results on our test set.

5.1. Objective Evaluation

Fig. 4 shows the improvement of our method compared
to JL2P and Lin et al. for all the metrics described in
Sec. 4.3. Our method shows an improvement of 55.4% in
the mean APE calculated for all local joints compared to
JL2P and by 58.4% compared to Lin et al. When including
the global trajectory, our method shows an improvement of
55.7% in mean APE compared to JL2P and 58.7% com-
pared to Lin et al. (Fig. 4 left). 3 We also observe that high
error in the root joint leads to either foot sliding in the mo-
tion or averages out the whole motion. Improvement in the
error values for the root joint indicates high-quality motions
without such artifacts. Further, our method shows closer re-
semblances to the variance of the ground-truth motion com-
pared to the baseline models (Fig. 4 center). Our method
has an improvement of 50.4% and 50.6% in the AVE over
the mean of all joints with the global trajectory compared to
JL2P and Lin et al. respectively. We provide detailed APE
and AVE values of individual joints in the supplementary
material.

We also show improvements of 50% in the CEE and SEE
metrics compared to JL2P. Compared to Lin et al., we show

2We decided to exclude JL2P [4] and Lin et al. [44] from the user study,
based on overwhelming feedback from participants that our method beats
the baselines in the most obvious ways.

3We note that our reported numbers for the baseline methods in the
APE metric are different from the original paper. However, we were unable
to replicate the numbers in the original paper using the code and the pre-
trained model provided by the authors.
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Figure 5: Semantic accuracy in percent, denoting how well
the motions correspond visually to the input sentences (left)
and motion quality in percent, showing the overall quality
of the motions in terms of naturalness (right). Higher val-
ues are better. Our method (red) is second-best only to the
ground-truth.

improvements of 72.3% and 83.1% in CEE and SEE re-
spectively (Fig. 4 right). These results show that the joint
embedding space learned by our method can correlate the
poses and corresponding sentences better than the baselines.

5.2. Qualitative Results

To qualitatively compare our model with JL2P [4] and
Lin et al. [44], we examine the generated motions from all
three methods. Fig. 3 shows two motions with compara-
tively high sentence perplexities [52]. Our method (top row
left) accurately generates the kicking action with the correct
foot and right arm positions as described in the sentence,
while the baseline models fail to generate a kick at all (mid-
dle and bottom rows left). Fig. 3 (right) further shows that
the Waltz dance is more prominent in our model, compared
to both baselines where arm movements appear to be miss-
ing completely, and the skeleton tends to slide than actually
step. Fig. 6 shows screenshots with motions generated from
complex sentence semantics. Our method (left) accurately
synthesizes a trajectory that matches the semantics of the
sentence. Although JL2P [4] generates a circular trajectory
(bottom right), the walking direction does not match the se-
mantics of the sentence. Lin et al. [44] fail to generate a
circular trajectory at all. Further, neither method can syn-
thesize the correct turning motions (middle and right).

6. Limitations, Future Work and Conclusion

We presented a novel framework that advances the
state-of-the-art on text-based motion synthesis on qualita-
tive evaluations and several objective benchmarks. While
our model accurately synthesizes compositional actions en-
countered during training, it cannot always synthesize novel
motions successfully. We intend to extend our model to
a zero- or few-shot paradigm [56] such that it generates
compositional actions from input sentences without being
trained on those specific motions. We also plan to exper-

Figure 6: Comparison of generated motions of our method
(left) with Lin et al. [44] (middle) and JL2P [4] (right) for
long sentences indicating the direction and the number of
steps. Orange and green crosses respectively denote the
start- the end-points of the motion. Blue curve on the plane
denotes the trajectory and the black dots represent the foot
steps. Our method is able to follow the semantics of the
sentences, while the baselines fail.

iment with narration-based transcripts that describe long
sequences of step-by-step actions involving multiple peo-
ple, e.g., narration-based paragraphs depicting step-by-step
movements for performing complex actions such as dance
and professional training. To this end, a different embed-
ding that explicitly models the sequential nature of the task
may be more suitable, but that may also reduce the ability of
the model to synthesize actions not described in a sequential
manner. We also plan to introduce physical constraints [55]
to improve on the general motion quality, such as foot slid-
ing, limb constraints, and biomechanical plausibility.

Being able to model a variety of motions and handle such
complex sentence structures is an essential next step in gen-
erating realistic animations for mixtures of actions in the
long-term and improving the practical applicability of text-
based motion synthesis systems. To the best of our knowl-
edge, this is the first work to achieve this quality of motion
synthesis on a benchmark dataset and is an integral step to-
wards script-based animations.
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