51 research outputs found

    Constrained titanohematite formation at BTO/Fe interfaces deposited by RF-sputtering

    Get PDF
    The usage of heterostructures of ferromagnetic and ferroelectric materials, as a means of achieving magnetoelectric multiferroic coupling, is a widely used approach which has been showing promising results. Along this line of thought, the deposition of BaTiO3 and Fe multilayers on LaAlO3, MgO, Al2O3 and SrTiO3 substrates using RF-magnetron sputtering was carried out to study its viability to produce magnetoelectric heterostructures. It is shown that each substrate constrains the growth of the deposited thin films, even for the same deposition conditions. This is clearly seen through the magnetic properties of the thin film, mainly after performing a 900 °C thermal annealing in air. The thermal annealing results in the creation of iron oxides specific of each one of the substrates where the deposition took place.publishe

    Ship-Based Repeat Hydrography: A Strategy for a Sustained Global Program."

    Get PDF
    ABSTRACT Ship-based hydrography is the only method for obtaining high-quality measurements with high spatial and vertical resolution of a suite of physical, chemical, and biological parameters over the full ocean water column, and in areas of the ocean inaccessible to other platforms. Global hydrographic surveys have been carried out approximately every decade since the 1970s through research programs such as GEOSECS, TTO/SAVE, WOCE / JGOFS, and CLIVAR. It is time to consider how future surveys can build on these foundations to create a coordinated network of sustained ship-based hydrographic sections that will become an integral component of the ocean observing system. This white paper provides scientific justification and guidelines for the development of a regular and coordinated global survey

    The Southwest Pacific Ocean circulation and climate experiment (SPICE) : report to CLIVAR SSG

    Get PDF
    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Nino-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    Controls on circulation, cross-shelf exchange, and dense water formation in an Antarctic polynya

    No full text
    Circulation on the Antarctic continental shelf influences cross-shelf exchange, Antarctic Bottom Water formation, and ocean heat flux to floating ice shelves. The physical processes driving the shelf circulation and its seasonal and interannual variability remain poorly understood. We use a unique time series of repeat hydrographic observations from the Adélie Land continental shelf and a box inverse model to explore the relationship between surface forcing, shelf circulation, cross-shelf exchange, and dense water formation. A wind-driven northwestward coastal current, set up by onshore Ekman transport, dominates the summer circulation. During winter, strong buoyancy loss creates dense shelf water. This dense water flows off the shelf, with a compensating on-shelf flow that is an order of magnitude larger in winter than in summer. The results demonstrate the importance of winter buoyancy loss in driving the shelf circulation and cross-shelf exchange, as well as dense water mass formation

    Tailoring of YIG film properties via compositional tuning by multi-beam pulsed laser deposition

    No full text
    We report an investigation of the effects of variation of composition on the properties of YIG (yttrium iron garnet) films grown on YAG substrates by multi-beam pulsed laser deposition (PLD)
    • 

    corecore