514 research outputs found
Visual Occam: High level visualization and design of process networks
With networks, multiprocessors, and multi-threaded systems becoming more common in our world it is increasingly evident that concurrent programming is not something to be ignored or marginalized even though many takes on concurrency (mainly by means of monitors or shared resources) have proven to be difficult to deal with on large scales. Thankfully, a good deal of work has already been done to combat this, through CSP, occam, and other such derivatives, to produce a scalable process oriented paradigm. Still, it is cumbersome to attempt to deal with the intricacies of such communicating networks down to every minutia; if, instead, it was possible to manage communicating elements on a higher level it would be far more practical to design large scale networks of processes!
As such, Visual Occam has been designed to automate some of the inner workings of occam to allow any user (novice or otherwise) the ability to create complex networks of communicating processes through easy to understand user interactions and interfaces. Taking a number of cues from digital circuit design software and modern integrated development environments, it is possible to select components (both predefined and arbitrarily complex user created systems) from a library of objects, hook them together in a network, and produce compilable code without having to worry about how or why the chosen components perform their function. Since any of these components may themselves be networks of processes, it becomes trivial to construct large systems that would otherwise be unwieldy to put together by hand.
The end result? A high level, easy to understand, visual abstraction of those concurrent networks previously so frustrating to develop
Ulam floating bodies
We study a new construction of bodies from a given convex body in Rn which are isomorphic to (weighted) floating bodies. We establish several properties of this new construction, including its relation to pâaffine surface areas. We show that these bodies are related to Ulamâ s longâstanding floating body problem which asks whether Euclidean balls are the only bodies that can float, without turning, in any orientation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151836/1/jlms12226_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151836/2/jlms12226.pd
Ulam Floating Body
We study a new construction of bodies from a given convex body in
which are isomorphic to (weighted) floating bodies. We
establish several properties of this new construction, including its relation
to -affine surface areas. We show that these bodies are related to Ulam's
long-standing floating body problem which asks whether Euclidean balls are the
only bodies that can float, without turning, in any orientation.Comment: 25 pages, 3 figure
Motion frozen 18F-FDG cardiac PET
BackgroundPET reconstruction incorporating spatially variant 3D Point Spread Function (PSF) improves contrast and image resolution. "Cardiac Motion Frozen" (CMF) processing eliminates the influence of cardiac motion in static summed images. We have evaluated the combined use of CMF- and PSF-based reconstruction for high-resolution cardiac PET.MethodsStatic and 16-bin ECG-gated images of 20 patients referred for (18)F-FDG myocardial viability scans were obtained on a Siemens Biograph-64. CMF was applied to the gated images reconstructed with PSF. Myocardium to blood contrast, maximum left ventricle (LV) counts to defect contrast, contrast-to-noise (CNR) and wall thickness with standard reconstruction (2D-AWOSEM), PSF, ED-gated PSF, and CMF-PSF were compared.ResultsThe measured wall thickness was 18.9 ¹ 5.2 mm for 2D-AWOSEM, 16.6 ¹ 4.5 mm for PSF, and 13.8 ¹ 3.9 mm for CMF-PSF reconstructed images (all P < .05). The CMF-PSF myocardium to blood and maximum LV counts to defect contrasts (5.7 ¹ 2.7, 10.0 ¹ 5.7) were higher than for 2D-AWOSEM (3.5 ¹ 1.4, 6.5 ¹ 3.1) and for PSF (3.9 ¹ 1.7, 7.7 ¹ 3.7) (CMF vs all other, P < .05). The CNR for CMF-PSF (26.3 ¹ 17.5) was comparable to PSF (29.1 ¹ 18.3), but higher than for ED-gated dataset (13.7 ¹ 8.8, P < .05).ConclusionCombined CMF-PSF reconstruction increased myocardium to blood contrast, maximum LV counts to defect contrast and maintained equivalent noise when compared to static summed 2D-AWOSEM and PSF reconstruction
YarÄąn diye bir Ĺey...
Taha Toros ArĹivi, Dosya No: 262-TarÄąk BuÄr
Replication, Pathogenesis and Transmission of Pandemic (H1N1) 2009 Virus in Non-Immune Pigs
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1,2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5]
18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells
Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an
internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found
variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and
GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To
date no detailed study has been described that compares the suitability of commonly used housekeeping genes in
influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH,
18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B)
and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most
stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes.
Results: The relative expression stability of commonly used housekeeping genes were determined in primary
human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary
lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock
infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable
gene in HBECs, PTECs and avian lung cells.
Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells)
infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising
qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and
GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA
normalisation
Respiration-averaged CT versus standard CT attenuation maps for correction of the 18F-NaF uptake in hybrid PET/CT
BACKGROUND: To evaluate the impact of respiratory-averaged computed tomography attenuation correction (RACTAC) compared to standard single-phase computed tomography attenuation correction (CTAC) map, on the quantitative measures of coronary atherosclerotic lesions of (18)F-sodium fluoride ((18)F-NaF) uptake in hybrid positron emission tomography and computed tomography (PET/CT). METHODS: This study comprised 23 patients who underwent (18)F-NaF coronary PET in a hybrid PET/CT system. All patients had a standard single-phase CTAC obtained during free-breathing and a 4D cine-CT scan. From the cine-CT acquisition, RACTAC maps were obtained by averaging all images acquired over 5 seconds. PET reconstructions using either CTAC or RACTAC were compared. The quantitative impact of employing RACTAC was assessed using maximum target-to-background (TBR(MAX)) and coronary microcalcification activity (CMA). Statistical differences were analyzed using reproducibility coefficients and Bland-Altman plots. RESULTS: In 23 patients, we evaluated 34 coronary lesions using CTAC and RACTAC reconstructions. There was good agreement between CTAC and RACTAC for TBR(MAX) (median [Interquartile range]): CTAC= 1.65[1.23â2.38], RACTAC= 1.63[1.23â2.33], p=0.55), with coefficient of reproducibility of 0.18, and CMA: CTAC= 0.10 [0â1.0], RACTAC= 0.15[0â1.03], p=0.55 with coefficient of reproducibility of 0.17 CONCLUSION: Respiratory-averaged and standard single-phase attenuation correction maps provide similar and reproducible methods of quantifying coronary (18)F-NaF uptake on PET/CT
Evaluation of ELISA and haemagglutination inhibition as screening tests in serosurveillance for H5/H7 avian influenza in commercial chicken flocks
Avian influenza virus (AIV) subtypes H5 and H7 can infect poultry causing low pathogenicity (LP) AI, but these LPAIVs may mutate to highly pathogenic AIV in chickens or turkeys causing high mortality, hence H5/H7 subtypes demand statutory intervention. Serological surveillance in the European Union provides evidence of H5/H7 AIV exposure in apparently healthy poultry. To identify the most sensitive screening method as the first step in an algorithm to provide evidence of H5/H7 AIV infection, the standard approach of H5/H7 antibody testing by haemagglutination inhibition (HI) was compared with an ELISA, which detects antibodies to all subtypes. Sera (n = 1055) from 74 commercial chicken flocks were tested by both methods. A Bayesian approach served to estimate diagnostic test sensitivities and specificities, without assuming any 'gold standard'. Sensitivity and specificity of the ELISA was 97% and 99.8%, and for H5/H7 HI 43% and 99.8%, respectively, although H5/H7 HI sensitivity varied considerably between infected flocks. ELISA therefore provides superior sensitivity for the screening of chicken flocks as part of an algorithm, which subsequently utilises H5/H7 HI to identify infection by these two subtypes. With the calculated sensitivity and specificity, testing nine sera per flock is sufficient to detect a flock seroprevalence of 30% with 95% probability
- âŚ