37 research outputs found

    (R1504) Second-order Modified Nonstandard Runge-Kutta and Theta Methods for One-dimensional Autonomous Differential Equations

    Get PDF
    Nonstandard finite difference methods (NSFD) are used in physical sciences to approximate solutions of ordinary differential equations whose analytical solution cannot be computed. Traditional NSFD methods are elementary stable but usually only have first order accuracy. In this paper, we introduce two new classes of numerical methods that are of second order accuracy and elementary stable. The methods are modified versions of the nonstandard two-stage explicit Runge-Kutta methods and the nonstandard one-stage theta methods with a specific form of the nonstandard denominator function. Theoretical analysis of the stability and accuracy of both modified NSFD methods is presented. Numerical simulations that concur with the theoretical findings are also presented, which demonstrate the computational advantages of the proposed new modified nonstandard finite difference methods

    LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification) DNA Signatures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.</p> <p>Results</p> <p>LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for <it>Staphylococcus aureus </it>created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of <it>Mycobacterium tuberculosis</it>.</p> <p>Conclusions</p> <p>We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at <url>http://lava-dna.googlecode.com/</url>.</p

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Cynomolgus Macaque as an Animal Model for Severe Acute Respiratory Syndrome

    Get PDF
    BACKGROUND: The emergence of severe acute respiratory syndrome (SARS) in 2002 and 2003 affected global health and caused major economic disruption. Adequate animal models are required to study the underlying pathogenesis of SARS-associated coronavirus (SARS-CoV) infection and to develop effective vaccines and therapeutics. We report the first findings of measurable clinical disease in nonhuman primates (NHPs) infected with SARS-CoV. METHODS AND FINDINGS: In order to characterize clinically relevant parameters of SARS-CoV infection in NHPs, we infected cynomolgus macaques with SARS-CoV in three groups: Group I was infected in the nares and bronchus, group II in the nares and conjunctiva, and group III intravenously. Nonhuman primates in groups I and II developed mild to moderate symptomatic illness. All NHPs demonstrated evidence of viral replication and developed neutralizing antibodies. Chest radiographs from several animals in groups I and II revealed unifocal or multifocal pneumonia that peaked between days 8 and 10 postinfection. Clinical laboratory tests were not significantly changed. Overall, inoculation by a mucosal route produced more prominent disease than did intravenous inoculation. Half of the group I animals were infected with a recombinant infectious clone SARS-CoV derived from the SARS-CoV Urbani strain. This infectious clone produced disease indistinguishable from wild-type Urbani strain. CONCLUSIONS: SARS-CoV infection of cynomolgus macaques did not reproduce the severe illness seen in the majority of adult human cases of SARS; however, our results suggest similarities to the milder syndrome of SARS-CoV infection characteristically seen in young children

    Initial sequencing and analysis of the human genome

    Full text link
    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pd

    Bringing the margin to the focus: 10 challenges for riparian vegetation science and management

    Get PDF
    Riparian zones are the paragon of transitional ecosystems, providing critical habitat and ecosystem services that are especially threatened by global change. Following consultation with experts, 10 key challenges were identified to be addressed for riparian vegetation science and management improvement: (1) Create a distinct scientific community by establishing stronger bridges between disciplines; (2) Make riparian vegetation more visible and appreciated in society and policies; (3) Improve knowledge regarding biodiversity—ecosystem functioning links; (4) Manage spatial scale and context-based issues; (5) Improve knowledge on social dimensions of riparian vegetation; (6) Anticipate responses to emergent issues and future trajectories; (7) Enhance tools to quantify and prioritize ecosystem services; (8) Improve numerical modeling and simulation tools; (9) Calibrate methods and increase data availability for better indicators and monitoring practices and transferability; and (10) Undertake scientific validation of best management practices. These challenges are discussed and critiqued here, to guide future research into riparian vegetation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A Flexible Theory of Price Momentum

    No full text
    corecore