80 research outputs found

    Sport

    Get PDF
    Bakalářská práce sestává ze dvou částí. Z části praktické, kterou tvoří celkem pět velkoformátových kreseb dvě o rozměrech 250×150 cm a tři o rozměrech 200×100 cm , provedených uhlem na rýsovací karton, jejichž společným námětem je sportovní výkon, a skicovní materiál o rozsahu 10 listů formátu A4, provedený křídou a tužkou na papír, a z části teoretické, ve které popisuji vedle vlastního pracovního postupu a praktických náležitostí, s ním spojených, také cestu, která k volbě námětu vedla, myšlenková východiska i zdroje vlastní inspirace.Katedra výtvarné kulturyObhájenoThe bachelor thesis consists of two parts. The practical part is composed of five sport performance themed large-scale charcoal on paper drawings--two of them being 250cm by 150cm, the other three being 200cm by 100cm--including 10 A4 sized paper sheets with preliminary drawings in chalk and pencil. The theoretical part is a detailed description of mental processes behind the crucial decisions I made, sources of inspiration, preparation steps and the drawing technique I employed in creating the large-scale pictures itself

    Zdroj monoenergetických elektronů pro monitorování spektrometru v neutrinovém experimentu KATRIN

    Get PDF
    Mezinárodní projekt KATRIN (KArlsruhe TRItium Neutrino experiment) je experiment nové generace využívající beta rozpad tritia. Je navržen, aby umožnil změřit hmotnost elektronového antineutrina pomocí unikátního elektronového spektrometru s citlivostí 0.2 eV/c2 , což znamená zlepšení o jeden řád oproti stávajícím výsledkům. Významná část měření bude spočívat v nepřetržitém přesném monitorování vysokého napětí hlavního spektrometru KATRIN. Monitorování bude uskutečňováno s využitím elektronů vnitřní konverze emitovaných z pevného zdroje založeného na rozpadu 83 Rb. Vlastnosti několika těchto zdrojů jsou studovány v této práci pomocí polovodičové gama spektroskopie. Zaprvé je popsáno měření přesné energie jaderného přechodu 9.4 keV pozorovaného v rozpadu 83 Rb, ze které je odvozena energie konverzních elektronů. Zadruhé je popsáno měření rozložení aktivity pevných zdrojů pomocí detektoru typu Timepix. Nakonec je popsáno měření retence rozpadového produktu 83 Rb, isomerního stavu 83m Kr, v pevných zdrojích.The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next- generation tritium beta decay experiment. It is designed to measure the electron antineutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c2 . This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on 83 Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor gamma-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in 83 Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of retention of 83 Rb decay product, the isomeric state 83m Kr, in the solid sources is given.Institute of Particle and Nuclear PhysicsÚstav částicové a jaderné fyzikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Tritium beta decay with additional emission of new light bosons

    Get PDF
    We consider tritium beta decay with additional emission of light pseudoscalar or vector bosons coupling to electrons or neutrinos. The electron energy spectrum for all cases is evaluated and shown to be well estimated by approximated analytical expressions. We give the statistical sensitivity of Katrin to the mass and coupling of the new bosons, both in the standard setup of the experiment as well as for future modifications in which the full energy spectrum of tritium decay is accessible

    A novel detector system for KATRIN to search for keV-scale sterile neutrinos

    Get PDF
    International audienceSterile neutrinos appear in minimal extensions of the Standard Model of particle physics. If their mass is in the keV regime, they are viable dark matter candidates. One way to search for sterile neutrinos in a laboratory-based experiment is via the analysis of β-decay spectra, where the new neutrino mass eigenstate would manifest itself as a kink-like distortion of the β-decay spectrum. The objective of the TRISTAN project is to extend the KATRIN setup with a new multi-pixel silicon drift detector system to search for a keV-scale sterile neutrino signal. In this paper we describe the requirements of such a new detector, and present first characterization measurement results obtained with a 7 pixel prototype system

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016

    Gamma-induced background in the KATRIN main spectrometer

    Get PDF
    International audienceThe KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of β -particles from tritium β -decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background

    Analysis methods for the first KATRIN neutrino-mass measurement

    Get PDF
    We report on the dataset, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the β-decay kinematics of molecular tritium. The source is highly pure, cryogenic T2 gas. The β electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts β electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology
    corecore