91 research outputs found
Perspectives For Target Therapy In The Treatment Of Malignant Neoplasms Of The Urinary Bladder
Етиологията, патогенезата и лечението на злокачествените новообразувания на пикочния мехур все още пораждат редица въпроси. Установени са биомаркери, показващи разлики в молекулния образ на инвазивния и неинвазивния уроепителен карцином, които са част от факторите, отговорни за големите вариации в лечението дори и при тумори с еднакъв хистологичен резултат. В момента стандартно прилаганата системна терапия включва различни цитотоксични химиотерапевтични схеми и се основава главно на хистологичната оценка и стадирането на тумора. От май 2016 г. за първи път се разреши прилагането на прицелна терапия при лечение на онкологични зболявания на пикочен мехур. Прицелната терапия се използва за спиране на растежа и разпространението на раковите клетки, посредством потискане на активирани сигнални пътища - най-често на фибробластния, епидермалния и ендотелния растежен фактор. Изборът на „правилното` лекарство се базира до голяма степен върху молекулно-генетичната диагноза на тумора и наличие на специфични биомаркери, показващи възможността за прилагане на едно или друго лекарство.През последните години е постигнат значителен напредък в ерата на молекулната диагностика и прицелната терапия, което неминуемо води до удължаване на преживяемостта на онкопоциентите и подобряване качеството им на живот. В тази статия ние разглеждаме потенциалните и съществуващите възможности за приложение на прецизирана терапия при пациенти с уроепителни тумори.The etiology, pathogenesis and treatment of malignant neoplasms of the bladder still address a number of issues. Several biomarkers have been identified showing differences in the molecular image of invasive and non-invasive uroepithelial carcinoma. These biomarkers are part of the factors responsible for the large variation in treatment even in tumors with the same histological diagnosis. Currently, standard systemic therapy includes various cytotoxic chemotherapy regimens and is based mainly on histological evaluation and tumor progression. Since May 2016, target therapy has been approved for the first time in the treatment of oncological bladder disease. Target therapy is used to stop the growth and spread of cancer cells by suppressing activated signaling pathways - most often fibroblast, epidermal and endothelial growth factor pathways. The choice of „ the right` drug is largely based on the molecular genetic diagnosis of the tumor and the presence of specific biomarkers indicating the applicability of one or another drug.Significant progress has been made in the era of molecular diagnosis and target therapy, which leads to prolonged survival and improved quality of life of oncology patients. In this article, we examine the potential and existing options for the use of precision therapy in patients with uroeptithelial tumors
Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts.
OBJECTIVES: To develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age. DESIGN: Analysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score ≥7, stage T3-T4, PSA (prostate specific antigen) concentration ≥10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa. SETTING: Multiple institutions that were members of international PRACTICAL consortium. PARTICIPANTS: All consortium participants of European ancestry with known age, PCa status, and quality assured custom (iCOGS) array genotype data. The development dataset comprised 31 747 men; the validation dataset comprised 6411 men. MAIN OUTCOME MEASURES: Prediction with hazard score of age of onset of aggressive cancer in validation set. RESULTS: In the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z=11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P=0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score. CONCLUSIONS: Polygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa
Height, selected genetic markers and prostate cancer risk:Results from the PRACTICAL consortium
Background: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a
possible role for its association with the risk of aggressive prostate cancer.
Methods: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a
subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects
and their possible interactions.
Results: The results suggest that height is associated with high-grade prostate cancer risk. Men with height 4180cm are at a 22%
increased risk as compared to men with height o173cm (OR 1.22, 95% CI 1.01–1.48). Genetic variants in the growth pathway gene
showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased
risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as
compared to lowest score group.
Conclusions: There was no evidence of gene-environment interaction between height and the selected candidate SNPs. Our
findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is
seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.</p
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation.
Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.This work was supported by NIH fellowship F32 GM106584 (AG), NIH grants R01 MH101244(A.G.), R01 CA188392 (B.P.), U01 CA194393(B.P.), R01 GM107427 (M.L.F.), R01 CA193910 (M.L.F./M.P.) and Prostate Cancer Foundation Challenge Award (M.L.F./M.P.). This study makes use of data generated by the Wellcome Trust Case Control Consortium and the Wellcome Trust Sanger Institute. A full list of the investigators who contributed to the generation of the Wellcome Trust Case Control Consortium data is available on www.wtccc.org.uk. Funding for the Wellcome Trust Case Control Consortium project was provided by the Wellcome Trust under award 076113. This study makes use of data generated by the UK10K Consortium. A full list of the investigators who contributed to the generation of the data is available online (http://www.UK10K.org). The PRACTICAL consortium was supported by the following grants: European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135 and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative Grant: no. 1 U19 CA 148537-01 (the GAME-ON initiative); Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007 and C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), A Linneus Centre (Contract ID 70867902), Swedish Research Council (grant no K2010-70X-20430-04-3), the Swedish Cancer Foundation (grant no 09-0677), grants RO1CA056678, RO1CA082664 and RO1CA092579 from the US National Cancer Institute, National Institutes of Health; US National Cancer Institute (R01CA72818); support from The National Health and Medical Research Council, Australia (126402, 209057, 251533, 396414, 450104, 504700, 504702, 504715, 623204, 940394 and 614296); NIH grants CA63464, CA54281 and CA098758; US National Cancer Institute (R01CA128813, PI: J.Y. Park); Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2–2009; DFNI-B01/28/2012); Cancer Research UK grants [C8197/A10123] and [C8197/A10865]; grant code G0500966/75466; NIHR Health Technology Assessment Programme (projects 96/20/06 and 96/20/99); Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466 and The NCRI, UK; The US Dept of Defense award W81XWH-04-1-0280; Australia Project Grant [390130, 1009458] and Enabling Grant [614296 to APCB]; the Prostate Cancer Foundation of Australia (Project Grant [PG7] and Research infrastructure grant [to APCB]); NIH grant R01 CA092447; Vanderbilt-Ingram Cancer Center (P30 CA68485); Cancer Research UK [C490/A10124] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge; Competitive Research Funding of the Tampere University Hospital (9N069 and X51003); Award Number P30CA042014 from the National Cancer Institute.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/0.1038/ncomms1097
Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.
Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction
Germline variation at 8q24 and prostate cancer risk in men of European ancestry
Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification
- …