533 research outputs found

    The impact of temperature on the rheological behaviour of anaerobic digested sludge

    Get PDF
    The rheological properties of municipal anaerobic digested sludge rheology are temperature dependent. In this paper, we show that both solid and liquid characteristics decrease with temperature. We also show that the yield stress and the high shear (Bingham) viscosity are the two key parameters determining the rheological behaviour. By normalising the shear stress with the yield stress and the shear rate with the yield stress divided by the Bingham viscosity, a master curve was obtained, independent of both temperature and concentration. We also show that the rheological behaviour is irreversibly altered by the thermal history. Dissolution of some of the solids may cause a decrease of the yield stress and an increase of the Bingham viscosity. This result suggests that the usual laws used to describe the thermal evolution of the rheological behaviour of fluids are no longer valid with anaerobic digested sludge. Finally, the impact of temperature and thermal history have to be taken into account for the design of engineering hydrodynamic processes such as mixing and pumping

    The ATPase cycle of PcrA helicase and its coupling to translocation on DNA.

    Get PDF
    The superfamily 1 bacterial helicase PcrA has a role in the replication of certain plasmids, acting with the initiator protein (RepD) that binds to and nicks the double-stranded origin of replication. PcrA also translocates single-stranded DNA with discrete steps of one base per ATP hydrolyzed. Individual rate constants have been determined for the DNA helicase PcrA ATPase cycle when bound to either single-stranded DNA or a double-stranded DNA junction that also has RepD bound. The fluorescent ATP analogue 2'(3')-O-(N-methylanthraniloyl)ATP was used throughout all experiments to provide a complete ATPase cycle for a single nucleotide species. Fluorescence intensity and anisotropy stopped-flow measurements were used to determine rate constants for binding and release. Quenched-flow measurements provided the kinetics of the hydrolytic cleavage step. The fluorescent phosphate sensor MDCC-PBP was used to measure phosphate release kinetics. The chemical cleavage step is the rate-limiting step in the cycle and is essentially irreversible and would result in the bound ATP complex being a major component at steady state. This cleavage step is greatly accelerated by bound DNA, producing the high activation of this protein compared to the protein alone. The data suggest the possibility that ADP is released in two steps, which would result in bound ADP also being a major intermediate, with bound ADP.P(i) being a very small component. It therefore seems likely that the major transition in structure occurs during the cleavage step, rather than P(i) release. ATP rebinding could then cause reversal of this structural transition. The kinetic mechanism of the PcrA ATPase cycle is very little changed by potential binding to RepD, supporting the idea that RepD increases the processivity of PcrA by increasing affinity to DNA rather than affecting the enzymatic properties per se

    The sheet flow viscometer

    Get PDF
    Not availabl

    The laminar/turbulent transition in a sludge pipeline

    Get PDF
    Globally, wastewater treatment plants are under pressure to handle high concentration sludge in a sludge treatment line. Unawareness of the non-Newtonian behaviour of the thickened sludge has the potential to cause unexpected problems when the fluid behaviour changes from turbulent to laminar flow. In this study, sludge apparent viscosity was plotted as a function of total suspended solids concentration (TSS) and shear rate. Then, the transition velocity based on several predictive models in the literature was determined. This analysis provides a practical basis for the prediction of the pipe flow behaviour of thickened sludge in troubleshooting and engineering design

    The influence of laser hardening on wear in the valve and valve seat contact

    No full text
    In internal combustion engines it is important to manage the wear in the valve and valve seat contact in order to minimise emissions and maximise economy. Traditionally wear in this contact has been controlled by the use of a valve seat insert and the careful selection of materials for both the valve and the insert. More recently, due to the increasing demands for both performance and cost, alternative methods of controlling the wear, and the resulting valve recession, have been sought. Using the heating effect of a laser to induce localised phase transformations, to increase hardness and wear resistance, in materials has been used since the 1970s, however it is only in recent years that it has been able to compete with more established surface treatment techniques, particularly in terms of cost, as new laser hardware has been developed. In this work, a laser has been used to treat the valve seat area of a cast iron cylinder head. In order to optimise the laser parameters for use on the head, preliminary tests were carried out to investigate the fundamental wear characteristics of untreated cast iron and also cast iron with a range of laser treatments. Previous work has identified the predominant wear mechanism in the valve and valve seat contact as impact on valve closure. Two bespoke test machines, one for testing basic specimens and one for testing components, were used to identify the laser parameters most likely to yield acceptable results when applied to a cylinder head to be used in a fired dynamometer test. © 2009 Elsevier B.V. All rights reserved

    Optimum solids concentration in an agitated vessel

    Get PDF
    Particle suspension in high-concentration slurries has been studied using radial-, mixed-, and axial-flow impellers. Impeller power measurements in this study were linked to the mass of solids suspended in the agitation system rather than the suspension volume. This approach was based on the consideration that the rate of dissolution or reaction depends to a large extent on the exposed surface area or mass of solids and might not be affected by the suspension volume, once off-bottom suspension is achieved. It was found that the specific power, based on the mass of solids, can be minimized by operating the system at relatively higher solids concentrations in the range of 0.20-0.35 (v/v) for the solids, impeller types, and geometrical conditions used in this work. Overall, improved energy efficiency can be achieved by using higher-power-number impellers under unbaffled conditions over a range of solids concentrations. A case example is illustrated to demonstrate the benefits of adopting some of the optimization methods highlighted in this article

    The rheological behaviour of anaerobic digested sludge

    Get PDF
    Producing biogas energy from the anaerobic digestion of wastewater sludge is one of the most challenging tasks facing engineers, because they are dealing with vast quantities of fundamentally scientifically poorly understood and unpredictable materials; while digesters need constant flow properties to operate efficiently. An accurate estimate of sludge rheological properties is required for the design and efficient operation of digestion, including mixing and pumping. In this paper, we have determined the rheological behaviour of digested sludge at different concentrations, and highlighted common features. At low shear stress, digested sludge behaves as a linear viscoelastic solid, but shear banding can occur and modify the apparent behaviour. At very high shear stress, the behaviour fits well to the Bingham model. Finally, we show that the rheological behaviour of digested sludge is qualitatively the same at different solids concentrations, and depends only on the yield stress and Bingham viscosity, both parameters being closely linked to the solids concentration

    The viscoelastic behaviour of raw and anaerobic digested sludge: Strong similarities with soft-glassy materials

    Get PDF
    Over the last few decades, municipal and industrial wastewater treatment activities have been confronted with a dramatically increasing flow of sewage sludge. To improve treatment efficiency, process and material parameters are needed but engineers are dealing with vast quantities of fundamentally poorly understood and unpredictable material Thus, accurate prediction of critically important, but analytically elusive process parameters is unattainable and is a matter of grave concern. Because engineers need reliable flow properties to simulate the process, this work is an attempt to approach sludge rheological behaviour with well-known materials which have similar characteristics. Sludge liquid-like behaviour is already well documented so, we have focused mainly on the solid-like behaviour of both raw and digested sludge by performing oscillatory measurements in the linear and non-linear regimes. We have shown that the viscoelastic behaviour of sludge presents strong similarities with soft-glassy materials but differences can be observed between raw and digested sludge. Finally, we confirm that colloidal glasses and emulsions may be used to model the rheological behaviour of raw and anaerobic digested sludge

    Clear model fluids for peculiar rheological properties of thickened digested sludge

    Get PDF
    Optimising flow processes in wastewater treatment plants requires that designers and operators take into account the flow properties of the sludge. Moreover, due to increasingly more stringent conditions on final disposal avenues such as landfill, composting, incineration etc., practitioners need to produce safer sludge in smaller quantities. Anaerobic digestion is a key treatment process for solids treatment and pathogen reduction. Due to the inherent opacity of sludge, it is impossible to visualise the mixing and flow patterns inside an anaerobic digester. Therefore, choosing an appropriate transparent model fluid which can mimic the rheological behaviour of sludge is imperative for visualisation of the hydrodynamic functioning of an anaerobic digester. Digested sludge is a complex material with time dependent non-Newtonian thixotropic characteristics. In steady state, it can be modelled by a basic power-law. However, for short-time processes the HerscheleBulkley model can be used to model liquid-like properties. The objective of this study was to identify transparent model fluids which will mimic the behaviour of real sludge. A comparison of three model fluids, Carboxymethyl Cellulose (CMC), Carbopol gel and Laponite clay revealed that these fluids could each model certain aspects of sludge behaviour. It is concluded that the rheological behaviour of sludge can be modelled using CMC in steady state flow at high shear rates, Carbopol gel for short-time flow processes and Laponite clay suspension where time dependence is dominant

    (In Press) Rheological characterisation of municipal sludge: A review

    Get PDF
    Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important
    corecore