CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
The influence of laser hardening on wear in the valve and valve seat contact
Authors
H. Taylor
Lewis
+8 more
Lewis
Lewis
P. King
Pantelis
R. Lewis
Rudnev
T. Slatter
Tianmin
Publication date
1 June 2009
Publisher
'Elsevier BV'
Doi
Abstract
In internal combustion engines it is important to manage the wear in the valve and valve seat contact in order to minimise emissions and maximise economy. Traditionally wear in this contact has been controlled by the use of a valve seat insert and the careful selection of materials for both the valve and the insert. More recently, due to the increasing demands for both performance and cost, alternative methods of controlling the wear, and the resulting valve recession, have been sought. Using the heating effect of a laser to induce localised phase transformations, to increase hardness and wear resistance, in materials has been used since the 1970s, however it is only in recent years that it has been able to compete with more established surface treatment techniques, particularly in terms of cost, as new laser hardware has been developed. In this work, a laser has been used to treat the valve seat area of a cast iron cylinder head. In order to optimise the laser parameters for use on the head, preliminary tests were carried out to investigate the fundamental wear characteristics of untreated cast iron and also cast iron with a range of laser treatments. Previous work has identified the predominant wear mechanism in the valve and valve seat contact as impact on valve closure. Two bespoke test machines, one for testing basic specimens and one for testing components, were used to identify the laser parameters most likely to yield acceptable results when applied to a cylinder head to be used in a fired dynamometer test. © 2009 Elsevier B.V. All rights reserved
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 25/02/2019
White Rose Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.whiterose.ac.uk:90...
Last time updated on 28/06/2012