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ABSTRACT: 
Globally, wastewater treatment plants are under pressure to handle high concentration 

sludge in a sludge treatment line. Unawareness of the non-Newtonian behaviour of the 

thickened sludge has the potential to cause unexpected problems when the fluid behaviour 

changes from turbulent to laminar flow.  

 

In this study, sludge apparent viscosity was plotted as a function of Total Suspended Solids 

concentration (TSS) and shear rate. Then, the transition velocity based on several predictive 

models in the literature was determined. This analysis provides a practical basis for the 

prediction of the pipe flow behaviour of thickened sludge in troubleshooting and 

engineering design. 

 

Keyword: High concentration sludge, Laminar flow, Non-Newtonian fluids, Turbulence, 

Transport processes, Viscoplastic 

 
INTRODUCTION 
Large volumes of primary and secondary sludge are produced on a daily basis at sewage 

treatment plants. In many cases, this sludge receives tertiary treatment in anaerobic 

digesters. The main purpose of this tertiary treatment is to reduce the organic content and 

pathogen levels of the sludge as well as the odour potential prior to any subsequent 

processing or disposal activities. Anaerobic sludge digesters are typically well mixed 

reactors operating at 37ºC. The heat load is normally provided by continuously circulating a 

sludge stream from the digester through an external heat exchanger. 

Due to increasing urban populations and associated issues, wastewater treatment plants are 

under pressure to treat increasing volumes of wastewater with existing treatment plant. For 

tertiary treatment processes, this inevitably means that a more concentrated sludge will 

circulate in the anaerobic digesters and the associated pipes, pumps and heat exchangers. A 

serious exacerbating issue is the fact that viscous stresses increase exponentially with 

concentration, and become increasingly viscoplastic in character. Underlying these matters 

is the fact that a fluid’s flow behaviour changes fundamentally, depending upon whether 

the flow is in the laminar or turbulent flow regime. From a fluid mechanics design and 

operational perspective, a major concern is the particular possibility that laminar flow will 

be encountered where previously it was customarily assumed to be turbulent. 

Consequently, accurate prediction of the transition velocity of this thickened sludge from 

turbulent to laminar flow is a critically important, but analytically elusive, process 

parameter. 
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The objective of this study is to provide a practical basis for the prediction of the pipe flow 

behaviour of highly concentrated sludge for troubleshooting and engineering design, in this 

context. 

 
THEORY AND LITERATURE REVIEW 
The behaviour of a fluid changes fundamentally at the point of the laminar/turbulent 

transition and it is vitally important either in hydraulic design or in flow control to identify 

this point accurately. Over the last 50 years, a number of predictive approaches have been 

proposed. But those such as the Metzner and Reed (1955) model that use simple criteria for 

the determination of the flow regime in non-Newtonian fluid - similar to that for a 

Newtonian fluid - have been very popular.  

 

Non-Newtonian sludges are often best modelled as yield pseudoplastic material (Govier 

and Aziz, 1972 and Hanks, 1979). The constitutive rheological equation for the yield 

pseudoplastic rheological model is 
n







−+=

dr

du
K  yττ                   Eq.1 

where yτ
is the yield stress, K is the fluid consistency index and n is the flow behaviour 

index.  This expression can be used to represent both Herschel-Bulkley and Bingham 

plastic behaviour (Slatter and Wasp, 2000). 

 

For Newtonian fluids, tThe generally accepted value of the Reynolds number at the lower 

bound of the laminar/turbulent transition is 2100 (Govier and Aziz, 1972) and the critical 

velocity can easily be formulated, Vc=2100µ/ρD. In order to make use of standard 

Newtonian theory, a value for the viscosity of the fluid is required. Usually the term 

viscosity is meaningless once a non-Newtonian approach has been adopted. However, an 

apparent viscosity can be defined at the pipe wall (Holland, 1973), and the standard 

Newtonian theory can be adapted for a non-Newtonian fluid by using the apparent viscosity 

at the wall in the standard Newtonian Reynolds number equation (Eq.2). Then, the 

transition velocity from laminar to turbulent flow is obtained when the Reynolds number is 

equal to 2100. 

0

0

Newt

dr

du

τ
µ'where

µ'

VDρ
Re







−

==                 Eq.2 

 

Metzner and Reed (1955) used the laminar Fanning friction factor, f, as their stability 

parameter. They proposed that for all time independent non-Newtonian fluids flowing in 

pipes, transition would take place at the critical value of 0.0076 for the Fanning friction 

factor or 2100 for ReMR. This generality has made the Metzner and Reed approach popular 

and is arguably the most widely encountered. They defined a non-Newtonian Reynolds 

number, ReMR = 16/f, as follows: 
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n

2
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
′

=                         Eq.3 

 

The problem with this model is that for a viscoplastic fluid, K′ and n′are not constant and 

must be evaluated for each value of 0τ
. This leads to a significant complication in the use of 

this model (Slatter, 1995). 

 

The Bingham plastic model  has been found useful by many researchers to approximate the 

viscous flow behaviour of non-Newtonian materials (Xu et al., 1993; Slatter, 2001), and a 

Reynolds number can be formulated as (Grovier and Aziz, 1972);  

( )
KV

D
K

VD

y

6
1

ρ
ReBP τ

+

=                  Eq.4 

It is assumed that the transition from laminar to turbulent flow will occur when ReBP=2100 

(Eq.4), from which the critical velocity can be defined as  

ρ

τ y
19Vc = .                 Eq.5 

 

The fundamental problem here is that, at larger diameter, the yield stress causes the 

transition velocity to become independent of the pipe diameter (Slatter, 2007). This is in 

sharp contrast to the Newtonian hyperbolic condition where VCD is constant for a given 

fluid. Skelland (1967) has shown that the laminar/turbulent transition should occur when 

ReBP=2100. 

 

Ryan and Johnson (1959) suggested using the ratio of input energy to energy dissipation for 

a fluid element as the stability parameter. Hanks (1981) identified the key mechanism 

leading to transitional instability is a rotational momentum transfer. They have derived 

stability functions for laminar flow velocity vector fields (Slatter, 2007), and for axially 

symmetrical pipe flow the two functions differ by a factor of two. The Ryan and Johnson 

stability function is: 

]
dr

du
[

τ

Ruρ
Z

0

−=  ,         Eq.6 

where R is the internal radius of the pipe. 

 

The maximum value of this function Zmax across a given laminar velocity vector field is 

taken as the stability criterion. For Newtonian pipe flow, Zmax = 808 corresponds to Re = 

2100 and it is assumed that all fluids will obtain this value of Zmax = 808 at the transition 

limit. The transition criterion is Zmax = 808. Experimental data of Slatter (1995) showed that 

for viscoplastic fluids, the transition from laminar to turbulent flow does not occur at a 

constant value of Zmax = 808.  

 



 

 4

Hedstrom (1952) proposed a practical approach which uses the intersection of laminar and 

turbulent friction factor curves (Wilson, 1997). This approach is known as the intersection 

method. The critical velocity calculated by this approach relies on the accuracy of the 

turbulent model used. This model is also incompatible with Newtonian behaviour, where 

the transition point is not the intersection of the laminar and turbulent theoretical lines 

(Slatter, 1995; Slatter, 1999). 

 

Torrance (1963) modelled yield pseudoplastic fluid flow. He used the following 

formulation for a Reynolds number, also known as the Clapp Reynolds number (Govier 

and Aziz, 1972): 

n

2

nn

D

8V
K

V8ρ
Re









=                                                                                                          Eq.7 

This Reynolds number gives the same value for a pseudoplastic and yield pseudoplastic 

fluids, as the yield stress is totally ignored. Therefore the Torrance Reynolds number 

(Torrance, 1963) does not accurately encompass the full viscous stress, due to the fact that 

the full rheology is not included (yield stress is excluded). It also should be noted that there 

is no direct claim in the literature that this Reynolds number should obtain the value 2100 

at the transition point. 

  

A recent approach which is popular in the mining industry is the Reynolds number Re3 

(Slatter, 1995; Slatter, 1999). This approach predicts a laminar to turbulent transition in the 

Reynolds number region of 2100. This approach was specifically developed to place 

emphasis on the viscoplastic nature of the material (Slatter, 1995). Using the fundamental 

definition that Re ∝ inertial / viscous forces, the final formulation is: 

n

shear

ann

y

2

ann

3

D

8V
Kτ

V8ρ
Re









+

=                  Eq.8 

 
Figure 1: Unsheared plug geometry  

 

As shown in Fig 1, in the presence of a yield stress the central core of the fluid moves as a 

solid plug which fundamentally affects the stability of flow (Slatter, 1995; Slatter, 1999). 

The unsheared plug is treated as a solid body in the centre of the pipe. The flow that the 

plug represents must be subtracted as it is no longer being treated as part of the fluid flow. 

The corrected mean velocity in the annulus Vann is then obtained as follows:  
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                      Eq.9                                                       

and            

Qplug = uplugAplug.         Eq.10 

 

The constitutive rheological equation can be integrated to obtain the plug velocity uplug, 

( ) 


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
−

+
=

+

n

1n

y0

0

plug ττ
1n

n

τ2K

D
u

n

1
                                                 Eq.11  

   

The radius of the plug is 

R
τ

τ
r

0

y

plug =                Eq.12 

The sheared diameter, Dshear, is taken as the characteristic dimension because this represents 

the zone in which shearing of the fluid actually takes place, and it is defined as: 

Dshear = D – Dplug,                                                                                     Eq.13 

where  

 

Dplug = 2rplug.       Eq.14 

 

The laminar-turbulent prediction method Re3 was developed specifically for visco-plastic 

material, and has been shown to be the most accurate predictive tool for this purpose as yet, 

(Slatter, 1995; Slatter and Wasp, 2000; Slatter and Wasp, 2004). In particular, Re3 has been 

shown to be significantly superior to Zmax. Furthermore, all the other Reynolds number 

approaches ignore the fact that an un-sheared solid plug exists under laminar flow 

conditions due to the presence of the yield stress. 

 

Recently, Guzel et al. (2009) defined a local Reynolds number, ReG,l(r) as follows: 

)(

u(r)D
)(Re ,

r
rlG

µ

ρ
=                        Eq.15                                           

where u(r) is the axial velocity and µ(r) is the effective velocity, which depends on r via the 

rate of strain, )(rγ& . This interpretation of the local Reynolds number is close to the stability 

parameters postulated by Ryan and Johnson (1959) and (Hanks, 1963). 

 

EXPERIMENTAL DATA AND ANALYSIS 
The data for three concentrations of sludge in this study were obtained from previous work 

(Slatter 1997). Slatter (1997) used a rotary viscometer (HAAKE ROTOVISCO MV1P) for 

rheological measurements. Figure 2 shows the sludge rheograms, which present with both 

yield stress and rheogram curvature. Figures 3 and 4 show the apparent viscosity of sludge 

as a function of shear rate and total suspended solid concentration (TSS), respectively.  
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Figure2: Sludge rheograms for three concentrations of sludge 

  
Figure3: Apparent viscosity as a function of shear rate 
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Figure4: Apparent viscosity of sludge at a shear rate of 100 s

-1
, as a function of total 

suspended solid concentration (TSS) 

 
Figure 5: Correlation between rheological parameters and sludge concentration 

 

Figure 5 shows the correlations between the fluid consistency index (K), the yield stress 

( yτ ) and the flow behaviour index (n) with sludge concentration. The Landel et al. (1965) 

correlation (Eq.16) and Dabak and Yucel (1987) correlation (Eq.17) were used for 

correlating the fluid consistency index (K) and the yield stress with sludge concentration, 

respectively. As there is no proposed correlation for the flow behaviour index with sludge 

concentration, polynomial regression (n= a1 C
2
+ a2 C+1 with a1= - 1.56E1, and a2= -4.59) 

was used. The rheological constants ( yτ , K, n) of the sludge are presented in Table 1.  

Fig 
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Table 1: The rheological constants for three concentrations of sludge 

 
TSS (g/l) 

Apparent viscosity at 100 s
-1

 

shear rate (Pa.s) 
yτ  

(Pa) 

K 

(Pa.s
n
) 

n 

Sludge # 1 31.7 0.021 1.04 0.0239 0.827 

Sludge # 2 46.6 0.075 3.13 0.240 0.632 

Sludge # 3 66.2 0.198 12.0 0.366 0.664 

 
A 150 mm diameter heat exchanger pipe was considered for calculating transition velocities 

from turbulent to laminar flow and the calculated values are presented in Table 2. The 

density of all sludge concentrations was assumed to be similar to the density of water as the 

highest sludge concentration is 6% which does not produce significant changes in density.  

 
Table2: The calculated transition velocity from different models for three different 

concentrations of sludge in a 150 mm diameter heat exchanger pipe  
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Figure6:  Critical velocity as a function of total solid suspension concentration 

 

Table 2 summarizes the calculated values for transition velocities from the different models 

introduced earlier. As Re3 is the most successful predictive tool for transition/critical 

 Vc (ms
-1

) from 

ReNewt. 

Vc (ms
-1

) from 

ReMR. 

Vc (ms
-1

) 

from ReBP 

Vc (ms
-1

) 

from Zmax. 

Vc (ms
-1

) 

from Renn. 

Vc (ms
-1

) 

from Re3. 

Sludge # 1 0.47 0.68 0.61 0.65 0.22 0.85 

Sludge # 2 1.11 1.45 1.06 1.49 0.83 1.59 

Sludge # 3 1.88 2.58 2.08 2.58 1.25 2.94 
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velocity calculation (Slatter, 1995; Slatter and Wasp, 2000; Slatter and Wasp, 2004), all 

calculated values of the transition velocity from the other models underestimated the 

transition point from turbulent to laminar flow. Figure 6 shows the calculated critical 

velocity using the Re3 model against sludge concentration. This figure indicates that above 

a concentration of 31.7g/L in this type of sludge, the requirement for turbulent velocity will 

exceed the standard design velocity, which is 0.8 m/s (Ludwig, 1999), in the 150mm (6 in) 

heat exchanger pipe with a 15 L/s sludge volumetric flow rate, Also, a small increase in 

sludge concentration causes a steep increase in the critical velocity. For example, 5g/L 

increase in sludge concentration changed the critical velocity from 0.8 m/s to 1.1 m/s, 

which is a 38% increase. The critically important point of note is that ignoring the non-

Newtonian character of the fluid can result in blockage and inefficient performance in the 

heat exchanger pipes when the fluid behaviour changes from turbulent to laminar flow. 

 
CONCLUSION 
In this paper, the transition/critical velocity from turbulent to laminar flow for three 

different concentrations of sludge was calculated for different models in literature. All 

predicted values of the transition velocity from these models underestimated the transition 

point in comparison to the most successful predictive model. Also, the data analysis 

revealed that a small increment in sludge concentration significantly increases the critical 

velocity. This analysis affords a practical basis for troubleshooting and engineering design 

because it can provide realistic, useful and accurate prediction of the pipe flow behaviour of 

highly concentrated sludge. 

 
NOMENCLATURE 
D - Pipe inside diameter (m) 

f - Fanning friction factor 

K - Fluid consistency index (Pa.s
n
) 

K′ Metzner and Reed parameter (Pa.s
n’

) 

n - Flow behavior index 

n′  Metzner and Reed parameter 

r – Radial position (m) 

R – Pipe inside radius (m) 

Re3 - Slatter laminar to turbulent Reynolds Number 

ReNewt. Newtonian theory Reynolds Number 

ReMR. Metzner and Reed Reynolds Number 

ReBP Bingham plastic model Reynolds Number 

TSS- Total suspended solid concentration (g/L) 

u –Point velocity (m s
-1

) 

V – Average velocity (m s
-1

) 

VC – Critical/ transition velocity (m s
-1

) 

Zmax - Ryan and Johnson stability function 

γ&  - Shear rate (s
-1

) 

ρ – Fluid density (kg m
-3

) 

0τ - Wall shear stress (Pa) 

yτ - Yield stress (Pa) 

µ' - Apparent viscosity 
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0][
dr

du
−  Velocity gradient at wall (s

-1
) 

][
dr

du
−  Velocity gradient (s

-1
) 

Subscripts: 

0 at the pipe wall 

ann of the annulus 

c critical 

plug of the plug 

Shear over the sheared zone 
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