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Abstract 14 

 15 

Producing biogas energy from the anaerobic digestion of wastewater sludge is one of the most 16 

challenging tasks facing engineers, because they are dealing with vast quantities of fundamentally 17 

scientifically poorly understood and unpredictable materials; while digesters need constant flow 18 

properties to operate efficiently. An accurate estimate of sludge rheological properties is required 19 

for the design and efficient operation of digestion, including mixing and pumping. In this paper, we 20 

have determined the rheological behaviour of digested sludge at different concentrations, and 21 

highlighted common features. At low shear stress, digested sludge behaves as a linear viscoelastic 22 

solid, but shear banding can occur and modify the apparent behaviour. At very high shear stress, 23 

the behaviour fits well to the Bingham model. Finally, we show that the rheological behaviour of 24 

digested sludge is qualitatively the same at different solids concentrations, and depends only on 25 

the yield stress and Bingham viscosity, both parameters being closely linked to the solids 26 

concentration. 27 

 28 
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Introduction 33 

 34 

Renewable energy is said to be one of the pillars of sustainable management. Biogas from the 35 

anaerobic digestion of sewage sludge can provide a clean, easily controlled source of renewable 36 

energy from sewage sludge, replacing fossil fuels. However, an accurate estimate of sludge 37 

rheological properties is required for the design and efficient operation of the pumping systems 38 

which surround anaerobic digesters (Slatter, 1997, 2003). Indeed Tarp and Melbinger (1967) 39 

showed the significant advantages of recycling and recirculating digested sludge to mix it with 40 
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excess sludge, among them an increase in biogas production (Sperry, 1959). The mixture can be 41 

concentrated to a much higher solid content than would be possible for the excess sludge alone, 42 

and recirculation also facilitates improved mixing efficiency over mechanical stirring. However, the 43 

flow rate in the recirculation circuits has to be very large (Appels et al, 2008) and rheology is 44 

needed to calculate head losses and pumping power (Slatter, 2001). 45 

Except for the work of Monteiro (1997) who showed that anaerobic digestion induces a decrease of 46 

the rheological characteristics of sludge, most investigations on sludge rheology were focused on 47 

activated sludge. No reliable data, at high shear rate (within recirculation pipes), can be found in 48 

the literature for digested sludge while at low shear rate (within the digester), results are scarce 49 

and not always usable. Most of these were obtained by applying shear rate ramps that gave 50 

distinct peaks in the flow curve (for example, Ayol et al., 2005), but Baudez (2006) clearly 51 

established that these peaks in the flow curves were principally instrument artefacts, and not 52 

material characteristics. However, the work of Ayol et al. (2005) pointed out that with very dilute 53 

sludge, the Ostwald model, i.e. a power law model with no yield stress, gave the best fit. 54 

From a physical perspective, digested sludge appears to be a stable suspension with low settling 55 

rates (Namer and Ganczarczyk, 1993) and low surface charge (Forster, 2002), implying that 56 

interactions are more steric than electrostatic. The most important constituents in digested sludge 57 

are lipopolysaccharides (Forster, 1983) which are amphiphile lipids with both hydrophilic and 58 

hydrophobic heads. These molecules displayed a very intriguing rheological behaviour (Muñoz et 59 

al, 2000), showing linear viscoelasticy, non-Newtonian viscous flow and shear banding (Miller and 60 

Rothstein, 2007). 61 

In this paper, our intention is to establish the basic characteristics of the rheological behaviour of 62 

digested sludge, with the objective of industrial applications in digester mixing, pumping and pipe 63 

flows, meaning that we will focus on short-term behaviour. Short-term behaviour means we will not 64 

focus our research on eventual thixotropic effects. As predicted by the literature on amphiphile 65 

rheology, we show that digested sludge exhibits linear viscoelastic behaviour at low shear 66 

stresses, followed by shear-banding phenomena at intermediate stresses, and finally a non-67 

Newtonian fluid behaviour with a yield stress, modelled by a Herschel-Bulkley model at 68 

intermediate shear rates and by a Bingham model at very high shear rates. We also highlight the 69 

fact that the rheological behaviour is qualitatively the same at different solid concentrations, 70 

allowing us to define a master-curve for which the dimensionless parameters are the yield stress 71 

and the Bingham viscosity. 72 

 73 

Material and methods 74 

 75 

The digested sludge was sampled at the Mount Martha waste water treatment plant (Melbourne, 76 

Victoria, Australia) at the outlet of the digester number 1. Its initial solid concentration was at 77 

18.5g.L-1 and was also gently concentrated to 25.5, 32 and 49g.L-1 by using a Buchner vacuum. 78 

Sludge samples were stored at 4°C for 30 days befor e experiments, in order to reduce temporal 79 

variability. Indeed, even after anaerobic digestion, sludge may not be fully stabilised and organic 80 
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changes may still occur. By storing the sludge sample for such an extended period, the potential 81 

for composition changes is reduced; and we can assume that we used exactly the same material 82 

throughout all our experiments. 83 

 84 

Rheological measurements were performed with a DSR200 instrument from Rheometric Scientific, 85 

connected to a temperature controlled water bath. The rheometer was equipped with a cup and 86 

bob geometry (inner diameter: 29mm, outer diameter: 32mm, length: 44mm). Temperature was 87 

kept at 25°C. To avoid evaporation, sludge was cove red with a thin film of immiscible Newtonian 88 

oil. 89 

Before each measurement, sludge was presheared for 10 minutes at a shear rate of 1000s-1 then 90 

left at rest for 10 minutes. This procedure allowed us to erase material memory and to have 91 

reproducible measurements. Then, different tests were performed: 92 

• Shear stress sweep, by applying a linear ramp of increasing stress over time. In this test, 93 

we changed the time of rest between preshear and shear, from 1 to 60 minutes in order to 94 

investigate structural changes occurring during rest; 95 

• Creep test, by applying constant shear stress and measuring the corresponding shear 96 

strain, at different shear stresses in the linear viscoelastic regime and above; 97 

• Decreasing stress ramp to determine the flow curve, starting at a high stress corresponding 98 

to a shear rate of approximately 1000s-1 or lower for the less concentrated sludge (to avoid 99 

turbulent conditions). 100 

 101 

 102 

Results and discussion 103 

 104 

Starting from rest, the shear stress sweep first elicits a linear viscoelastic response from the 105 

digested sludge up to a critical shear stress 0τ  above which the material apparently starts to flow 106 

(Fig. 1). In the linear viscoelastic region, the behaviour is modelled by a generalised Kelvin-Voigt 107 

model, with a wide relaxation time spectrum modelled by a stretched exponential: 108 
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where γ  represents the strain, τ  the stress and 
µ

λ G=  with G  and µ  the usual parameters of a 110 

Kelvin-Voigt model. 111 

Assuming that the sludge is flowing in its liquid regime above the critical shear stress following a 112 
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where a is the slope of the shear stress ramp and 0t  the time such that the shear stress equals the 115 

yield stress of the Herschel-Bulkley model 00 ta ⋅=τ . 116 

Thus, the total strain, which predicts the experimental data (Fig. 1), can be expressed as: 117 

( ) ( )( )( ) ( ) nn ttbt
G

t
11

0exp1
1 +−⋅+−−⋅⋅= λτγ         (3) 118 

with ( ) Kn

an
b

⋅+
=

1
 119 

Applying this to the experimental data gave a flow behaviour index for the Herschel-Bulkley model, 120 

n, greater than 1 (Fig. 1), meaning that the digested sludge could apparently be a shear-thickening 121 

liquid above 0τ , which is unusual.  122 

Creep tests confirmed a change in the behaviour above 0τ . Below 0τ , the strain slowly increased 123 

with time, while above 0τ , the increase is faster (Fig. 2), both following a power law with time. 124 

However, even for stresses higher than 0τ  (Fig. 2) the shear strain follows a power-law with a 125 

power-law index less than 1, indicating that the shear rate is a decreasing function of time: there is 126 

no steady state and so, sludge is restructuring and not flowing (otherwise, the shear rate would 127 

have been constant over time for a constant shear stress). The value 0τ  cannot therefore be 128 

considered as a classical yield stress above which digested sludge flows in its liquid regime. These 129 

power-law relationships between strain and time are in fact a consequence of a structural 130 

relaxation process which occurs during creep (Baudez, 2008). 131 

When the time of rest between the preshear and the stress sweep increases, the behaviour is 132 

globally the same, with first a linear viscoelastic behaviour (Fig. 3) but the critical shear stress, 
0τ  133 

decreases with increase of the time of rest, the global elasticity decreases, the mean relaxation 134 

time (inverse of λ ) increases and the strain corresponding to 0τ  decreases (Fig. 4): the longer the 135 

time of rest, the smaller the linear viscoelastic range. 136 

At rest, the digested sludge structure became weaker and weaker (decrease of 0τ  and elasticity) 137 

but concurrently the relaxation time increased, indicating an evolution from a viscoelastic material 138 

towards a more elastic solid (the decrease of µ  is faster than the decrease of G ). Since this is 139 

physically impossible, this observed apparent behaviour is not representative of the true material 140 

behaviour but derives from erroneous interpretation of raw data. 141 

Above 0τ , experimental results showed the viscosity is globally decreasing, which is inconsistent 142 

with the apparent shear-thickening behaviour noted earlier, but oscillations of viscosity regarding 143 

shear stress are reported (Fig. 5). These oscillations indicated local minima in the flow curve where 144 

apparent shear rate occasionally decreased while shear stress increased.  145 

If we assume the relationship between local shear rate and local shear stress is monotonic, then 146 

we can write: 147 

( )τγ f=&  where f is the inverse function of the behaviour law. 148 
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In a Couette geometry, the shear rate can be expressed as: 149 
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where ω  is the angular velocity, 1R  the inner radius and 1RR −  the thickness of the sheared 151 

region. The maximum value of 1RR −  is 12 RR − , where 2R  is the outer radius. 152 

The apparent shear rate is calculated from the measured angular velocity, the only raw data 153 

measured by the rheometer. The shear rate given by the rheometer is calculated with the 154 

assumption of a full shear within the gap. So, if the apparent shear rate decreased, it means the 155 

angular velocity decreased. However, because f is a monotonic function, this decrease of ω  is 156 

rather the consequence of a decrease of the effective gap 1RR − , implying that shear banding has 157 

occurred during the measurement. 158 

Such behaviour (shear banding and viscoelastic behaviour) has to be taken into account in 159 

digester design and operation, because shear banding means that there is coexistence of both 160 

sheared and unsheared zones in the digester, these last being useless, unmixed, dead zones. 161 

According to Moller et al. (2008), the width of the flowing band can be directly related to the 162 

macroscopically imposed shear rate. At high shear rates, the whole gap is sheared and when the 163 

applied stress is much higher than 0τ , the sludge flows normally, with no apparent perturbation 164 

effects, allowing us to have achieve reproducible measurements (Fig. 6) with the corresponding 165 

smooth classical shape of the flow curve. 166 

As expected, the higher the concentration, the thicker the sludge (Fig. 7) but depending on the 167 

shear rate range, different well-known models can be used to describe the rheological behaviour of 168 

digested sludge. At high shear rates, a basic Bingham model is sufficient (Fig. 8) while at low and 169 

intermediate shear rates, Herschel-Bulkley and power-law models are more appropriate (Fig 9). 170 

They all represent the same material but can only be used in a specific range of validity, regarding 171 

the complexity of the process to be modelled. Thus, for pumping where shear rates are very high, 172 

a Bingham model would be appropriate since it deals with simple characteristics, i.e. a yield stress 173 

and a constant rheogram slope above it. 174 

From a more general point of view, in the liquid regime we can summarize the rheological 175 

behaviour of digested sludge as a shear-thinning yield stress fluid with a plateau viscosity at high 176 

shear rates: 177 

( ) ( ) 0αγηγγηττ γ  →⋅+= ∞→&
&&& withc  178 

Moreover, at low and intermediate shear stresses, ( ) ( ) 1−⋅≈⇔⋅+=⋅+= n
c

n
c KK γγηγγητγττ &&&&&  179 

Thus, for the sake of simplicity, we define the rheological behaviour of digested sludge as follows: 180 

( ) γαγττ && ⋅+⋅+= −
0

1n
c K           (5) 181 

On our range of data, i.e. below 1000s-1, this model was successful. However, if n
K

−<< 1

0α
γ& , the 182 

Herschel-Bulkley model is sufficient to model the behaviour, which corresponds to a shear rate 183 
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smaller than 565s-1 for the most concentrated sludge and smaller than 145 s-1 for the less 184 

concentrated sludge as shown below (Table 1). 185 

 186 

Table 1: Shear rate above which the Herschel-Bulkley model is not suitable 187 

Concentration [%] Limit shear rate [s-1] 

1.85 145 

2.56 280 

3.17 470 

4.89 565 

 188 

Equation (5) can also be expressed as: 189 
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 191 

In such a dimensionless form, all the flow curves are similar, independent of solids concentration 192 

(Fig. 10). From a physical point of view, this result means that there is some similarity of the 193 

network of interactions within the sludge at different concentrations, which is at the origin of the 194 

similarity of its macroscopic behaviour. In such suspensions, interactions can be classified into two 195 

main groups (Baudez and Coussot, 2001): hydrodynamic interactions  (between solid particles and 196 

surrounding fluid, here basically represented by the Bingham viscosity) and non-hydrodynamic 197 

interactions  (between solid particles, basically represented by the yield stress). Increasing the 198 

concentration doesn’t change the nature of these interactions, but rather modifies their relative 199 

intensity. The dimensionless form smoothed these differences because both kinds of interactions 200 

in this form will approach unity. 201 

On our range of concentrations, yield stress and Bingham viscosity increase with the solid 202 

concentration (Fig. 11) respectively following a power-law and an exponential law of the following 203 

form, which is in agreement with the literature, both for the yield stress (Baudez, 2008) and the 204 

Bingham viscosity (Sanin, 2002): 205 

( )m
c 0φφατ −⋅=            (7) 206 

( )φβµ ⋅⋅= exp02k            (8) 207 

where 0φ  is the lowest concentration below which there is no yield stress, m is related to the fractal 208 

dimension of sludge flocs (Baudez, 2008) and 0µ  is the viscosity of the liquid medium.  209 
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We found that the value 0µ  is twice that of pure water, which can be explained by the large 210 

amount of dissolved matter present, which may increase the supernatant viscosity.  211 

 212 

 213 

Conclusion 214 

 215 

In this paper, we have shown that digested sludge is a shear-thinning yield stress fluid, presenting 216 

flow instabilities at low shear rates, manifesting as shear banding. At low shear stress, below the 217 

yield stress, digested sludge behaved as a viscoelastic solid. When the applied stress is increased, 218 

above a critical shear strain, which decreases with the restructuring, shear banding appears. Then, 219 

at higher stresses, digested sludge behaves like a yield stress fluid and can be modelled using 220 

both the Herschel-Bulkley and Bingham plastic models over a wide range of shear rates. 221 

This behaviour was similar at different concentrations and yield stress followed a power-law with 222 

the concentration while the Bingham viscosity followed an exponential law with concentration. 223 

By reducing the rheological parameters with the yield stress and the Bingham viscosity, which 224 

have to be measured separately, a master curve was obtained. This result means that the 225 

rheological behaviour of the digested sludge at any concentration can be deduced from this master 226 

curve.  227 

However, further work has to be done on shear banding. This behaviour will have to be taken into 228 

account in digester design and process operations, in order to avoid dead zones in the digester. 229 
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Captions 272 

 273 

 274 
Figure 1: Strain-stress behaviour of the 4.9% digested sludge. The dashed lined corresponds to the 275 

model of (1) with G=0.62Pa, λλλλ=3.3.10-7s-1, m=0.34, b=0.35s-2, t0=315.5s, corresponding to a stress 276 

equals to 2.13Pa and n=1.30. 277 

 278 

 279 



 10

 280 
Figure 2: Creep test below, above and equal to the critical shear stress. Here, the critical stress is 2.5 281 

Pa for the 4,9% sludge. The insert is a focus on the strain at the highest strain at longer time, 282 

following a power-law with an index smaller than 1. 283 

 284 

 285 
Figure 3: strain stress behaviour when a stress sweep is applied after different time of rest. 286 
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 288 

 289 

 290 

 291 
Figure 4: Evolution of the Kelvin-Voigt model parameters as a function of the time of rest. 292 

 293 

 294 

 295 

 296 
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 298 
Figure 5: stress-viscosity variations highlighted oscillations with the 4.9% digested sludge. 299 
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Figure 6: Repeatability of the measurements. 302 

 303 
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 304 

 305 
Figure 7: Flow curves regarding the concentration of the digested sludge. 306 
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 309 
Figure 8: At high shear rates, the rheological behaviour can be basically modelled with a Bingham 310 

plastic model. 311 

 312 
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 313 
Figure 9: At low and intermediate shear rates, the Herschel-Bulkley model or power-law model are 314 

the most suitable. The dashed line represents the power-law model 45.005.2 γτ &⋅= . 315 

 316 

 317 
Figure 10: Dimensionless flow curves of the digested sludge at different concentrations. 318 

 319 
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 320 

Figure 11: Evolution of the yield stress and the Bingham viscosity regarding the concentration. The 321 

parameters of the equations (7) and (8) are respectively a=0.19 Pa, 0φ =1.17%, m=1.89 and 322 

0µ =0.0018 Pa.s, β =0.604. 323 
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