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 13 
Abstract 14 
 15 
Over the last few decades, municipal and industrial wastewater treatment activities have been 16 

confronted with a dramatically increasing flow of sewage sludge. To improve treatment efficiency, 17 

process and material parameters are needed but engineers are dealing with vast quantities of 18 

fundamentally poorly understood and unpredictable material  Thus, accurate prediction of critically 19 

important, but analytically elusive process parameters is unattainable and is a matter of grave 20 

concern. Because engineers need reliable flow properties to simulate the process, this work is an 21 

attempt to approach sludge rheological behaviour with well-known materials which have similar 22 

characteristics. Sludge liquid-like behaviour is already well documented so, we have focused 23 

mainly on the solid-like behaviour of both raw and digested sludge by performing oscillatory 24 

measurements in the linear and non-linear regimes. We have shown that the viscoelastic 25 

behaviour of sludge presents strong similarities with soft-glassy materials but differences can be 26 

observed between raw and digested sludge. Finally, we confirm that colloidal glasses and 27 

emulsions may be used to model the rheological behaviour of raw and anaerobic digested sludge. 28 
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 2 

Introduction 37 
 38 
Sewage sludge production is the residue of wastewater treatment and by definition can’t be 39 

avoided. In the EU it is produced at more than 30 000 tonnes (dry matter) per day and will increase 40 

by at least 10 % in 2020 (EUREAU, 2012). These volumes have to be treated and reused. 41 

Slatter (1997, 2001, 2003, 2004 and 2008) has consistently shown that sludge rheology plays a 42 

fundamentally important role in analysing the hydrodynamic behaviour of the sludge, as it flows in 43 

pipes or in tanks and reactors, such as anaerobic digesters. However, sludge properties 44 

continuously evolve due to the ongoing biochemical reactions, and for this reason it cannot be 45 

used as a reference material for the design of industrial processes: engineers need reliable and 46 

repeatable flow properties to simulate the process. Thus, various researchers attempted to use 47 

model fluids instead of sludge, such as kaolin suspension for the yield stress determination 48 

(Spinosa and Lotito, 2003), polymeric gels (Legrand et al., 1997), polyvinyl chloride (PVC) 49 

suspensions (Bongiovanni, 1998), polystyrene latex (Sanin and Vesilind, 1996), but none of these 50 

was particularly successful because each of these model fluids was only representative of a 51 

particular application. To model the flow properties of sludge, mainly in its liquid regime, kaolin 52 

suspensions are often used (Heritier et al., 2010) because it shows shear-thinning behaviour with a 53 

yield stress, modelled with a Herschel-Bulkley model (Masalova et al., 2006). Even if this model 54 

fluid can be used to simulate high velocity flows, it is not suitable for simulating the liquid-like 55 

behaviour at intermediate shear rates, nor the solid-like behaviour at low shear rates, which 56 

appears to be crucial in order to avoid – or at least minimize – dead zones in reactors, such as 57 

anaerobic digesters or aeration basins. 58 

Because of its fundamental nature, sludge is a very complex mixture of unknown composition and 59 

its rheological behaviour is highly dependent of the treatment processes: accurate prediction of 60 

critically important, but analytically elusive, process parameters is unattainable and is a matter of 61 

grave concern.  62 

For sake of simplicity, in the following we will only distinguish between raw, activated and 63 

anaerobically digested sludge, respectively representative of the outlet of sludge treatment when 64 

no tertiary treatment is applied and when anaerobic digestion is implemented. Both are 65 

temperature-dependent (Dieude-Fauvel et al., 2009; Baudez and Slatter, 2012), present 66 

viscoelastic properties at low shear stress and a shear-thinning behaviour at high shear stress 67 
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(Baudez and Coussot, 2001, Baudez et al., 2011), but at intermediate shear stresses, raw sludge 68 

is a thixotropic material (Tabuteau et al., 2006, Baudez, 2008) with ageing effects (Baudez, 2008) 69 

while anaerobic digested sludge highlights shear banding (Baudez et al., 2011). 70 

Raw and digested sludge are mainly composed of water (more than 95%) and the remaining part 71 

is made of organic matter and bacteria which tend to aggregate forming flocs. That is the usual 72 

‘chemical’ definition of sludge: organic flocs suspended in water. However, physically, sludge can 73 

also be visualised as interacting particles in a suspending medium: bacteria form extra polymeric 74 

substances (EPS), finally presenting a three-dimensional gel-like biofilm matrix (Wingender et al., 75 

1999). EPS are highly charged polymers that interact with water in a manner similar to gels 76 

(Keiding et al., 2001, Sutherland, 2001). They interact with divalent metal ions to form sludge flocs 77 

in both aerobic and anaerobic treatment systems (Higgins and Novak, 1997). Flocs in activated 78 

sludge usually carry negative charge at neutral pH. It has been found that the extracellular 79 

polymeric substances (EPS) contribute to the negative surface charge of the sludge flocs (Jia et 80 

al., 1996; Liao et al., 2001). As regards the influence of the anaerobic digestion, Jia et al. (1996) 81 

also observed that during batch tests both surface charge and EPS content change significantly. 82 

Polysaccharides and proteins were found to be the most significant surface polymers in activated 83 

(raw) sludge (Forster, 1983), and the two types of binding mechanisms between water molecules 84 

and the EPS structure are considered to be electrostatic and hydrogen bonds (Flemming, 1996). 85 

Digestion leads to the transfer of bigger flocs into smaller ones (Mahmoud et al., 2006) and 86 

disintegration of the organics brings the solids to a homogeneous grain structure, with an increase 87 

of the quantity of colloidal particles (Turovskii and Matai, 2006) and a decrease of EPS 88 

(Karapangiotis et al., 1998). The anaerobic digestion data showed strong correlations between 89 

soluble protein generation and ammonium production (Park et al., 2006). The most important 90 

constituents in digested sludge are proteins and lipopolysaccharides (Forster, 1983), which are 91 

amphiphile lipids with both hydrophilic and hydrophobic heads. Novak et al. (2003) found the 92 

protein concentration was 3–5 times greater than the polysaccharide concentration in anaerobic 93 

systems compared to aerobic ones. They also noticed an increase of monovalent cations. 94 

From a physical point of view, anaerobic digested sludge appears to be a stable suspension with 95 

low settling ability (Namer and Ganczarczyk, 1993) and low surface charge (Forster, 2002) 96 

indicating that interactions are more steric than electrostatic.  97 
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Moreover, Mikkelsen and Keiding (2002) showed that the ratio between protein and 98 

polysaccharides are more or less of the same order between activated and (mesophilic) digested 99 

sludge, but the degree of dispersion is 20 times higher after anaerobic digestion, indicating that 100 

sludge structure is strongly affected by anaerobic digestion. 101 

 102 

In this paper, we intend to draw parallels between well-known materials and sludge. These well-103 

known materials could then be used a model fluids to emulate the rheological behaviour of sludge 104 

for the investigation and design of treatment technologies. Because the liquid-like behaviour of 105 

sludge is well documented, we will intentionally focus on the solid-like behaviour of both raw and 106 

digested sludge by performing oscillatory measurements in the linear and non-linear viscoelastic 107 

regimes. We show that the viscoelastic behaviour of sludge presents strong similarities with soft-108 

glassy materials but differences can be observed between raw and digested sludge. Stress and 109 

frequency sweeps were conducted at different temperatures to demonstrate that Brownian motion 110 

also plays a role in the build-up and break-down of sludge structure. Finally, we demonstrate that 111 

colloidal glasses and emulsions may be used to model the rheological behaviour of raw and 112 

anaerobic digested sludge. 113 

 114 

Materials and methodology 115 

 116 

Sludge was obtained from the Mount Martha wastewater treatment plant (Melbourne, Victoria, 117 

Australia) at the inlet (called raw sludge in the following) and the outlet (called digested sludge) of 118 

the digester number 1. The initial concentration of the raw sludge was found to be 45g.L-1 (this 119 

relatively high concentration was obtained after flotation thickening, without chemical conditioning) 120 

while the solid concentration of the digested sludge was found to be 18.5g.L-1. The latter was also 121 

gently concentrated to 32g.L-1 (and 42g.L-1 after a second sampling for time sweep experiments) 122 

by using a Buchner vacuum. These concentrations were chosen to be representative of thickened 123 

sludge which is more often used in digesters. Digested samples were stored at 4°C for 30 days 124 

before experiments were conducted to ensure no temporal variability, allowing us to use the same 125 

material for several days of testing. This technique was successfully used by Curvers et al. (2009). 126 
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On the other hand, because of their high degree of fermentation, raw sludge was stored only 5 127 

days before experiments. Although storage implied changes in the composition of the raw sludge, 128 

considering the duration of rheological characterisation, especially the frequency sweep, we 129 

needed to consider raw sludge as a ‘stable’ material, from both the biological and chemical points 130 

of view during our whole investigation. Because changes are very fast the 72 first hours (Baudez 131 

and Coussot, 2001), 5 days appears to be the shortest duration that we could manage with in order 132 

to ensure that we dealt with the same material in a short window of 24 hours. 133 

 134 

Time, stress and frequency sweep measurements were carried out with a stress-controlled 135 

DSR200 instrument from Rheometric Scientific, connected to a temperature controlled water bath. 136 

The rheometer was equipped with a cup and bob geometry (inner diameter: 29mm, outer diameter: 137 

32mm, length: 44mm). Temperature varied from 10 to 80°C (high temperatures were applied to 138 

highlight thermal phenomena). 139 

To avoid evaporation, sludge was covered with a thin film of known viscosity Newtonian oil: oil and 140 

sludge are not miscible, as evidenced by oil removal processes in wastewater treatment plants.  141 

Before each measurement, sludge was strongly pre-sheared at a shear rate of 500s-1 for 5 minutes 142 

and then left at rest respectively for 2 minutes for time sweeps, 5 minutes for strain sweeps and 1 143 

hour for frequency sweeps. This procedure allowed us to obtain reproducible results (Baudez et 144 

al., 2011). 145 

 146 

Results and discussion 147 

 148 

Time sweep 149 

Under constant stress, low enough to be in the linear viscoelastic regime (Ayol et al., 2006) and 150 

constant frequency, raw sludge aged with a monotonic decrease of the shear strain while the 151 

digested sludge reached an equilibrium state after less than 15 minutes (Figure 1). Shear history 152 

can be considered as negligible for digested sludge, but not for raw sludge which undergoes an 153 

ageing process. 154 

Note that, due to continuous bacterial activity, this ageing process must be considered as a short-155 

term characteristic: fermentation induces a fluidisation of the material (Baudez and Coussot, 2001) 156 
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and over long experimental times, under constant stress and constant frequency, the shear strain 157 

will increase. 158 

 159 

Strain sweep 160 

For both raw and digested sludge, G’ is nearly constant at low shear strain, suggesting a linear 161 

viscoelastic regime (LVE), in agreement with the results of Ayol et al. (2006). Then, both moduli 162 

become strain dependent with G’ decreasing and G’’ passing through a peak before decreasing as 163 

well (Figure 2). Of further interest is the strain-dependence of G’ and G’’: when G’’>G’, they both 164 

follow a power-law model (Figure 3), such as: 165 

n

n

G
G

2'
''

−

−

∝

∝

γ

γ
            (1) 166 

This peculiar behaviour is known to be the hallmark of soft-glassy materials (Wyss et al., 2005) and 167 

has been noticed for many other systems such as colloidal glasses (Mason and Weitz, 1995), 168 

emulsions (Mason et al., 1997) and gels (Altmann et al., 2004). 169 

However, while the transition from a solid-like to a liquid-like behaviour is smooth with digested 170 

sludge, raw sludge suddenly yields: G’ is divided by almost 10 and the strain drops sharply from 5 171 

to 16% when the applied stress changes from 0.43 to 0.46Pa (Figure 2 and insert). 172 

It is also worth noting that the peak in G’’ vanishes when the temperature increases (figure 4) and 173 

then disappears at very high temperatures for digested sludge while it appears to remain at almost 174 

constant amplitude with the raw sludge (figure 5). 175 

 176 

At this point, one can conclude that both raw and digested sludge present similarities with soft-177 

glassy materials, but also some differences:  178 

- digested sludge appears not to be an “out-of-equilibrium” material (at least at the 179 

considered concentration) and tends to behave like a simple colloidal suspension; 180 

- raw sludge is an out-of-equilibrium material which abruptly yields from a solid-like to a 181 

liquid-like behaviour. 182 

These differences may be attributed to the degree of dispersion of digested sludge which is 4 times 183 

higher than activated sludge, and the EPS concentration which is 2 times lower for digested 184 

sludge: according to Mikkelsen and Keiding (2006), the EPS fraction is the most important 185 
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parameter with respect to floc structure and the presence of large EPS quantities may increase the 186 

interaction via entanglement, which induce relaxation processes (Thurston, 2001). 187 

In both cases, increase of temperature induces a decrease of rheological characteristics: raw and 188 

digested sludge become more and more fluid (Figures 4 and 5) and we emphasise a 189 

proportionality between water viscosity and the strain at the cross-point where G’=G’’ (Figure 6) 190 

and above. Because water viscosity follows an Arrhenius law with temperature, we can deduce 191 

from Figure 6  that when G''>G', the viscoelastic characteristics follow an Arrhenius law too, with 192 

the same activation energy as water viscosity. 193 

These results suggest that the same molecular movements are involved in the temperature-194 

dependence of loss modulus and storage modulus in the liquid-like regime and water viscosity. 195 

However, in the solid-like regime, (G’>G’’), both G’ and G’’ follow a non-Arrhenius Vogel– 196 

Tammann–Fulcher (VTF) equation with the temperature (Figure 7) with almost the same 0T  (Table 197 

1): 198 

( )








−⋅

=
0

exp.'
TTR

EaAG           (2) 199 

This relation contains three adjustable parameters, A, Ea and T0, with T0 being the temperature 200 

where ‘free volume’ disappears in many ‘free volume’ models. The observed deviation from the 201 

Arrhenius law in the solid-like regime (G'>G'') is similar to what it is observed with fragile glasses 202 

(Kobayashi and Takahashi, 2008): when G'>G'', raw and anaerobic digested sludge can be seen 203 

as an amorphous solid; but they behave more like disordered liquids when G’’>G’. 204 

 205 

Table 1: Parameters of Equation (2) for the raw and digested sludge (at 3.2%) submitted to a constant 206 
shear stress respectively equivalent to a 1 and 2% shear strain. 207 

 G' G'' 

Digested sludge 

A [Pa] 9.58 1.58 

Ea/R [°C] 35.00 13.77 

T0 [°C] 98.36 97.91 

Raw sludge 

A [Pa] 12.75 1.872 
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Ea/R [°C] 17.10 15.99 

T0 [°C] 95.02 94.88 

 208 

Frequency sweep 209 

In the linear regime (shear strain lower than 2%), both raw and digested sludge show a weak 210 

power-law dependence (power law index smaller than 0.1) with the frequency (figure 8) with G’ and 211 

G’’ in a nearly constant ratio (#0.15). In the highest frequency range the digested sludge presents a 212 

shallow minimum in the G’’ curve. 213 

In the non-linear regime (shear strain higher than 10%), digested sludge exhibits a plateau for G' at 214 

intermediate frequencies and a localized minimum for G’’ (Figure 9) while raw sludge exhibits a 215 

plateau for both G’ and G’’ (data not shown). At lower frequencies, for both sludges, the loss 216 

modulus varies linearly with the frequency while the storage modulus follows a power-law with a 217 

power-law index higher than 1 which also increases with the temperature, at least for the digested 218 

sludge (figure 9-10): 219 

( ) ωω ∝>∝ '',1' GnG n           (3) 220 

 221 

Moreover, the linearity between frequency and loss modulus at low frequencies suggests 222 

similarities of the behaviour at all temperatures investigated in this work. Unfortunately, as 223 

previously mentioned such an assumption cannot be verified with raw sludge which is a highly 224 

fermentable and continuously changing material: frequency sweep experiments are time 225 

consuming and as the temperature increases, fermentation kinetics also increase. Consequently in 226 

such a case it is simply not possible to assume constant material properties throughout the 227 

experiment. However, with digested sludge, we can make this assumption and by horizontally 228 

shifting the frequency-dependence curves we obtain a master curve (Figure 11) for digested 229 

sludge samples at two different concentrations 230 

Surprisingly, the horizontal shift factor presents a linear relationship with the water viscosity for the 231 

lower concentration (Figure 12) but not for the higher concentration, indicating that thermal 232 

agitation cannot be considered as a key factor when the concentration increases. Consequently, 233 

other interactions can no longer be neglected, such as hydrophobic or electrostatic forces 234 

(Mikkelsen and Keiding, 2002). 235 
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 236 

Table 2 summarizes the main characteristics of the raw and digested sludge, including results get 237 

from the literature. First of all, anaerobic digestion not only modifies sludge composition but also its 238 

rheological behaviour. Consequently, these changes have to be taken into account in the flow 239 

behaviour analysis of material being digested in order to improve mixing and homogenisation. 240 

If we try to establish a parallel with well-known materials, these features (of raw and digested 241 

sludge) are similar to those found in the literature regarding the viscoelastic behaviour of soft-242 

glassy materials (Chen et al., 2010). However, soft-glassy materials encompass many materials 243 

such as pastes, foams, emulsions, colloids, etc. with their own specific characteristics. Looking at 244 

the ageing process; emulsions (Mason and Weitz, 1995) or paints (Baldewa and Joshi, 2011) 245 

could be seen as a convenient model for digested sludge. This assumption can be strengthened 246 

with the fact that, according to the literature (Forster, 1983), digested sludge is composed mainly of 247 

protein and lipopolysaccharides which can be seen as amphiphile materials. Besides, raw sludge 248 

highlights a more complex behaviour, with ageing and abrupt yielding, but also with temperature 249 

dependence, which is reminiscent of (thixotropic) colloidal gels (Joshi et al., 2008). This last 250 

assumption is in agreement with the work of Legrand et al. (1998) and Dursun and Dentel (2009) 251 

who considered that the gel approach is a pertinent conceptual model for sludge structure. 252 

Even if these assumptions still have to be clearly established, it may signify that during anaerobic 253 

digestion sludge evolves from a colloidal gel-like material to an emulsion-like material, and we may 254 

have to deal with a mix of emulsion-like and gel-like materials within reactors. Such a complexity 255 

may induce a very complex rheological behaviour in terms of mixing and homogenisation 256 

(industrial digesters are bigger than 10.000m3). 257 

Thus, further work has to be done by comparing all the rheological characteristics of digested and 258 

raw sludge with emulsion or paint and with colloidal gels over a broader range of concentrations; 259 

but also by looking at the rheological behaviour of sludge during anaerobic digestion, when all the 260 

highlighted characteristics coexist. 261 

 262 

 263 
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Table 2: main characteristics of both raw and digested sludge. The symbol * indicates results coming 264 
from the literature and cited in the introduction. 265 

 Raw sludge Digested sludge 

Major interactions* Electrostatic Steric 

Power-law rheology* Yes Yes 

Shear thinning behaviour* Yes Yes 

Shear-banding* No Yes 

Ageing after shear rejuvenation Yes No 

Temperature dependence 

(at least in the considered range 

of solids concentration) 

Non-Arrhenius law (G’>G’’) 

Arrhenius law (G’<G’’) 

Non-Arrhenius law (G’>G’’) 

Arrhenius law (G’<G’’) 

Time-temperature superposition Unknown Yes 

Stain dependence of G’ and G’’ 

(non-linear regime) 

Power-law, 

G’’ passes through a 

maximum before abrupt 

yielding 

Power-law, 

G’’ passes through a 

maximum before smooth 

yielding 

Frequency dependence of G’ and 

G’’ 

 

 

G’/G’’ nearly constant (linear 

regime) 

ωω ∝∝ '',' GG n  (non-linear 

regime) 

 

G’/G’’ nearly constant, 

shallow minimum for G’’ 

(linear regime) 

ωω ∝∝ '',' GG n  (non-linear 

regime) 

 266 

 267 

Conclusion 268 

 269 

The viscoelastic behaviour of raw and anaerobically digested sludge was analysed using 270 

oscillatory measurements. We found that both materials present strong similarities with soft-glassy 271 

materials: the storage modulus decreases monotonically with the shear strain, while the loss 272 

modulus passes through a maximum before decreasing. In the liquid-like regime, when G’<G’’, 273 

both moduli followed a power-law dependency against frequency. Increase of temperature also 274 
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induced a fluidisation of sludge, with a decrease of rheological characteristics according to both 275 

Arrhenius and VTF laws. However, raw and digested sludge have different structure and dominant 276 

interactions: also – the ageing process only occurs with raw sludge, not with digested sludge. 277 

In the range of concentrations tested, both sludges are temperature dependent and this behaviour 278 

appears to be highly dependent of thermal agitation, with some linear relationship between 279 

rheological characteristics and temperature-water viscosity variations. 280 

We have shown that colloidal gels and emulsion can model the rheological behaviour of 281 

respectively raw and digested sludge. Thus, this paper opens a new insight into sludge 282 

management by empowering engineers to model digested sludge with emulsions and raw sludge 283 

with colloidal gels. However, more work has to be done, by comparing all the rheological 284 

characteristics of digested and raw sludge with emulsion or paint and with colloidal gels over a 285 

broader range of concentrations. 286 

 287 

 288 
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 403 

 404 
Figure 1: Time evolution of the shear strain in the linear viscoelastic regime for both digested (at 42 405 
g.L-1) and raw sludge (at 45 g.L-1) when a constant shear stress is applied, respectively equal to 1Pa 406 
and 0.65Pa. The insert shows the strain evolution of digested sludge over longer time at a smaller 407 

shear stress (0.3Pa) and evidences that shear strain is remaining constant. 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 



 15 

 416 
Figure 2: Evolution of storage and loss moduli during stress sweep. The insert shows the stress-417 

strain relationship and the abrupt yielding of raw sludge compared to anaerobic sludge. 418 
 419 
 420 
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 421 
Figure 3: strain dependence of elastic (G') and loss (G'') moduli, at 25°C and 1Hz, for the digested 422 

sludge concentration of 3.2%. The insert represents the strain dependence of G' and G'' for the raw 423 
sludge in the liquid-like regime. 424 

 425 
 426 
 427 
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Figure 4: Strain sweep, at 0.2Hz, for a digested sludge concentration of 3.2% 429 
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 431 

 432 
Figure 5: Evolution of G'' at different temperatures during a stress sweep for the raw sludge. 433 
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 438 
Figure 6: Water viscosity and strain for which G'=G'' at 0.2Hz for the digested sludge (at 3.2%) and 439 

0.5Hz for the raw sludge at the 5 temperatures considered (10, 25, 40, 60°C). 440 
 441 
 442 

 443 
 444 
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 445 
Figure 7: G' and G'' both follow a non-Arrhenius law. Model parameters for the 3.2% sludge 446 

submitted to a constant shear stress equivalent to a 2% shear strain at 0.2Hz are respectively 447 
A=12.94Pa, Ea/R=50.43°C and T0=98.40°C for G', A=1.61Pa, Ea/R=13.77°C and T0=97.91°C for G''. 448 

 449 
 450 
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 451 
Figure 8: Frequency sweep in the LVE regime for both sludges. The slight increase of G' and G'' for 452 
the raw sludge may be attributed to ageing process 453 
 454 
 455 
 456 
 457 
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 458 
Figure 9: Frequency-dependence of G' and G'' at 25°C for the digested sludge in the non-linear 459 

regime. The insert shows the frequency dependence of raw sludge also in the non-linear regime. 460 
 461 
 462 

 463 
Figure 10: Frequency-dependence of the digested sludge at 40°C 464 
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 466 
Figure 11: Time-temperature superposition of the complex modulus for both concentrations of 467 

sludge. 468 
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Figure 12: Horizontal shift factor against water viscosity for the 1.85% and 3.2% sludge. The solid line 471 

represents a linear model. 472 
 473 
 474 
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