1,460 research outputs found

    On the exponential transform of lemniscates

    Full text link
    It is known that the exponential transform of a quadrature domain is a rational function for which the denominator has a certain separable form. In the present paper we show that the exponential transform of lemniscate domains in general are not rational functions, of any form. Several examples are given to illustrate the general picture. The main tool used is that of polynomial and meromorphic resultants.Comment: 19 pages, to appear in the Julius Borcea Memorial Volume, (eds. Petter Branden, Mikael Passare and Mihai Putinar), Trends in Mathematics, Birkhauser Verla

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo

    Get PDF
    Endothelial cell survival is indispensable to maintain endothelial integrity and initiate new vessel formation. We investigated the role of SHP-2 in endothelial cell survival and angiogenesis in vitro as well as in vivo. SHP-2 function in cultured human umbilical vein and human dermal microvascular endothelial cells was inhibited by either silencing the protein expression with antisense-oligodesoxynucleotides or treatment with a pharmacological inhibitor (PtpI IV). SHP-2 inhibition impaired capillary-like structure formation (p < 0.01; n = 8) in vitro as well as new vessel growth ex vivo (p < 0.05; n = 10) and in vivo in the chicken chorioallantoic membrane (p < 0.01, n = 4). Additionally, SHP-2 knock-down abrogated fibroblast growth factor 2 (FGF-2)-dependent endothelial proliferation measured by MTT reduction ( p ! 0.01; n = 12). The inhibitory effect of SHP-2 knock-down on vessel growth was mediated by increased endothelial apoptosis ( annexin V staining, p ! 0.05, n = 9), which was associated with reduced FGF-2-induced phosphorylation of phosphatidylinositol 3-kinase (PI3-K), Akt and extracellular regulated kinase 1/2 (ERK1/2) and involved diminished ERK1/2 phosphorylation after PI3-K inhibition (n=3). These results suggest that SHP-2 regulates endothelial cell survival through PI3-K-Akt and mitogen-activated protein kinase pathways thereby strongly affecting new vessel formation. Thus, SHP-2 exhibits a pivotal role in angiogenesis and may represent an interesting target for therapeutic approaches controlling vessel growth. Copyright (C) 2007 S. Karger AG, Basel

    Enhanced spin-phonon-electronic coupling in a 5d oxide

    Get PDF
    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm(-1), the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.open0

    Biochemical and structural studies of a L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii

    Get PDF
    addresses: Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.types: Journal Article; Research Support, Non-U.S. Gov'tThis a post-print, author-produced version of an article accepted for publication in Extremophiles. Copyright © 2009 Springer Verlag. The definitive version is available at http://link.springer.com/article/10.1007%2Fs00792-008-0208-0Haloacid dehalogenases have potential applications in the pharmaceutical and fine chemical industry as well as in the remediation of contaminated land. The L: -2-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii has been cloned and over-expressed in Escherichia coli and successfully purified to homogeneity. Here we report the structure of the recombinant dehalogenase solved by molecular replacement in two different crystal forms. The enzyme is a homodimer with each monomer being composed of a core-domain of a beta-sheet bundle surrounded by alpha-helices and an alpha-helical sub-domain. This fold is similar to previously solved mesophilic L: -haloacid dehalogenase structures. The monoclinic crystal form contains a putative inhibitor L: -lactate in the active site. The enzyme displays haloacid dehalogenase activity towards carboxylic acids with the halide attached at the C2 position with the highest activity towards chloropropionic acid. The enzyme is thermostable with maximum activity at 60 degrees C and a half-life of over 1 h at 70 degrees C. The enzyme is relatively stable to solvents with 25% activity lost when incubated for 1 h in 20% v/v DMSO

    Superparamagnetic properties of hemozoin

    Get PDF
    We report that hemozoin nanocrystals demonstrate superparamagnetic properties, with direct measurements of the synthetic hemozoin magnetization. The results show that the magnetic permeability constant varies from mu = 4585 (at -20 degrees C) to 3843 (+20 degrees C), with the values corresponding to a superparamagnetic system. Similar results were obtained from the analysis of the diffusion separation of natural hemozoin nanocrystals in the magnetic field gradient, with mu = 6783 exceeding the value obtained in direct measurements by the factor of 1.8. This difference is interpreted in terms of structural differences between the synthetic and natural hemozoin. The ab initio analysis of the hemozoin elementary cell showed that the Fe3+ ion is in the high-spin state (S = 5/2), while the exchange interaction between Fe3+ electron-spin states was much stronger than k(B)T at room temperature. Thus, the spin dynamics of the neighboring Fe3+ ions are strongly correlated, lending support to the superparamagnetism

    Substitutional Reality System: A Novel Experimental Platform for Experiencing Alternative Reality

    Get PDF
    We have developed a novel experimental platform, referred to as a substitutional reality (SR) system, for studying the conviction of the perception of live reality and related metacognitive functions. The SR system was designed to manipulate people's reality by allowing them to experience live scenes (in which they were physically present) and recorded scenes (which were recorded and edited in advance) in an alternating manner without noticing a reality gap. All of the naïve participants (n = 21) successfully believed that they had experienced live scenes when recorded scenes had been presented. Additional psychophysical experiments suggest the depth of visual objects does not affect the perceptual discriminability between scenes, and the scene switch during head movement enhance substitutional performance. The SR system, with its reality manipulation, is a novel and affordable method for studying metacognitive functions and psychiatric disorders

    Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation.

    Get PDF
    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol-gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV-vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV-vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore