50 research outputs found

    Convergent activation of two-pore channels mediated by the NAADP-binding proteins JPT2 and LSM12

    Get PDF
    The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) evokes calcium ion (Ca2+) release from endosomes and lysosomes by activating two-pore channels (TPCs) on these organelles. Rather than directly binding to TPCs, NAADP associates with proteins that indirectly confer NAADP sensitivity to the TPC complex. We investigated whether and how the NAADP-binding proteins Jupiter microtubule-associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12) contributed to NAADP-TPC-Ca2+ signaling in human cells. Biochemical and functional analyses revealed that recombinant JPT2 and LSM12 both bound to NAADP with high affinity and that endogenous JPT2 and LSM12 independently associated with TPC1 and TPC2. On the basis of knockout and rescue analyses, both NAADP-binding proteins were required to support NAADP-evoked Ca2+ signaling and contributed to endolysosomal trafficking of pseudotyped coronavirus particles. These data reveal that the NAADP-binding proteins JPT2 and LSM12 convergently regulate NAADP-evoked Ca2+ release and function through TPCs

    Progesterone receptor membrane component 1 facilitates Ca²⁺ signal amplification between endosomes and the endoplasmic reticulum

    Get PDF
    Membrane contact sites (MCSs) between endosomes and the endoplasmic reticulum (ER) are thought to act as specialized trigger zones for Ca2+ signaling, where local Ca2+ released via endolysosomal ion channels is amplified by ER Ca2+-sensitive Ca2+ channels into global Ca2+ signals. Such amplification is integral to the action of the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, functional regulators of inter-organellar Ca2+ crosstalk between endosomes and the ER remain poorly defined. Here, we identify progesterone receptor membrane component 1 (PGRMC1), an ER transmembrane protein that undergoes a unique heme-dependent dimerization, as an interactor of the endosomal two pore channel, TPC1. NAADP-dependent Ca2+ signals were potentiated by PGRMC1 overexpression through enhanced functional coupling between endosomal and ER Ca2+ stores and inhibited upon PGRMC1 knockdown. Point mutants in PGMRC1 or pharmacological manipulations that reduced its interaction with TPC1 were without effect. PGRMC1 therefore serves as a TPC1 interactor that regulates ER-endosomal coupling with functional implications for cellular Ca2+ dynamics and potentially the distribution of heme

    Ambient air pollution exposure and full-term birth weight in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births.</p> <p>Methods</p> <p>We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth.</p> <p>Results</p> <p>3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g) per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g) per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g) per pphm ozone, -7.7 g (-7.9 g, -6.6 g) per 10 <it>μ</it>g/m<sup>3 </sup>particulate matter under 10 μm, -12.8 g (-14.3 g, -11.3 g) per 10 <it>μ</it>g/m<sup>3 </sup>particulate matter under 2.5 μm, and -9.3 g (-10.7 g, -7.9 g) per 10 <it>μ</it>g/m<sup>3 </sup>of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters.</p> <p>Conclusions</p> <p>This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether a small shift in the population distribution of birth weight has broader health implications. However, the ubiquity of air pollution exposures, the responsiveness of pollutant levels to regulation, and the fact that the highest pollution levels in California are lower than those regularly experienced in other countries suggest that precautionary efforts to reduce pollutants may be beneficial for infant health from a population perspective.</p

    Arrhythmia Caused by a Drosophila Tropomyosin Mutation Is Revealed Using a Novel Optical Coherence Tomography Instrument

    Get PDF
    Background: Dilated cardiomyopathy (DCM) is a severe cardiac condition that causes high mortality. Many genes have been confirmed to be involved in this disease. An ideal system with which to uncover disease mechanisms would be one that can measure the changes in a wide range of cardiac activities associated with mutations in specific, diversely functional cardiac genes. Such a system needs a genetically manipulable model organism that allows in vivo measurement of cardiac phenotypes and a detecting instrument capable of recording multiple phenotype parameters. Methodology and Principal Findings: With a simple heart, a transparent body surface at larval stages and available genetic tools we chose Drosophila melanogaster as our model organism and developed for it a dual en-face/Doppler optical coherence tomography (OCT) instrument capable of recording multiple aspects of heart activity, including heart contraction cycle dynamics, ostia dynamics, heartbeat rate and rhythm, speed of heart wall movement and light reflectivity of cardiomyocytes in situ. We applied this OCT instrument to a model of Tropomyosin-associated DCM established in adult Drosophila. We show that DCM pre-exists in the larval stage and is accompanied by an arrhythmia previously unidentified in this model. We also detect reduced mobility and light reflectivity of cardiomyocytes in mutants. Conclusion: These results demonstrate the capability of our OCT instrument to characterize in detail cardiac activity i

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    NAADP-binding proteins find their identity

    No full text
    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action
    corecore