105 research outputs found
Investigating Rumor News Using Agreement-Aware Search
Recent years have witnessed a widespread increase of rumor news generated by
humans and machines. Therefore, tools for investigating rumor news have become
an urgent necessity. One useful function of such tools is to see ways a
specific topic or event is represented by presenting different points of view
from multiple sources.
In this paper, we propose Maester, a novel agreement-aware search framework
for investigating rumor news. Given an investigative question, Maester will
retrieve related articles to that question, assign and display top articles
from agree, disagree, and discuss categories to users. Splitting the results
into these three categories provides the user a holistic view towards the
investigative question. We build Maester based on the following two key
observations: (1) relatedness can commonly be determined by keywords and
entities occurring in both questions and articles, and (2) the level of
agreement between the investigative question and the related news article can
often be decided by a few key sentences. Accordingly, we use gradient boosting
tree models with keyword/entity matching features for relatedness detection,
and leverage recurrent neural network to infer the level of agreement. Our
experiments on the Fake News Challenge (FNC) dataset demonstrate up to an order
of magnitude improvement of Maester over the original FNC winning solution, for
agreement-aware search
Transition rates and nuclear structure changes in mirror nuclei 47Cr and 47V
Lifetime measurements in the mirror nuclei 47Cr and 47V were performed by
means of the Doppler-shift attenuation method using the multidetector array
EUROBALL, in conjunction with the ancillary detectors ISIS and the Neutron
Wall. The determined transition strengths in the yrast cascades are well
described by full pf shell model calculations.Comment: Latex2e, 11 pages, 3 figure
Very high rotational frequencies and band termination in 73Br
Rotational bands in 73Br have been investigated up to spins of 65/2 using the
EUROBALL III spectrometer. One of the negative-parity bands displays the
highest rotational frequency 1.85 MeV reported to date in nuclei with mass
number greater than 25. At high frequencies, the experimental dynamic moment of
inertia for all bands decrease to very low values, indicating a loss of
collectivity. The bands are described in the configuration-dependent cranked
Nilsson-Strutinsky model. The calculations indicate that one of the
negative-parity bands is observed up to its terminating single-particle state
at spin 63/2. This result establishes the first band termination case in the A
= 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid
Communicatio
Collective and broken pair states of 65,67Ga
Excited states of 65Ga and 67Ga nuclei were populated through the 12C(58Ni,αp) and 12C(58Ni,3p) reactions, respectively, and investigated by in-beam γ-ray spectroscopic methods. The NORDBALL array equipped with a charged particle ball and 11 neutron detectors was used to detect the evaporated particles and γ rays. The level schemes of 65,67Ga were constructed on the basis of γγ-coincidence relations up to 8.6 and 10 MeV excitation energy, and Iπ=27/2 and 33/2+ spin and parity, respectively. The structure of 65,67Ga nuclei was described in the interacting boson-fermion plus broken pair model, including quasiproton, quasiproton-two-quasineutron, and three-quasiproton fermion configurations in the boson-fermion basis states. Most of the states were assigned to quasiparticle + phonon and three quasiparticle configurations on the basis of their electromagnetic decay properties
ContextD: an algorithm to identify contextual properties of medical terms in a Dutch clinical corpus
REX-ISOLDE: post-accelerated radioactive BEAMS at CERN-ISOLDE
The ISOLDE RIB-facility at CERN has today been producing a vast range of radioactive beams since more than 30 years. The low-energy beams of ISOLDE will be complemented by a post-accelerator, REX-ISOLDE, currently being assembled. In order to convert the pseudo-DC, singly-charged beam from the ISOLDE mass separators into a cooled and bunched beam at higher charge states a novel scheme of trapping, cooling and charge-state breeding has been devised, using a linear Penning trap and an Electron Beam Ion Source (EBIS). This allows for subsequent acceleration by a short, cost-effective LINAC consisting of an RFQ, an IH-structure and three seven-gap resonators, reaching 0.8 - 2.2 MeV/u. The installation of REX-ISOLDE is well underway and the first post-accelerated radioactive beams are expected to be obtained during late 2000
Evidence for a spin-aligned neutron-proton paired phase from the level structure of Pd
The general phenomenon of shell structure in atomic nuclei has been
understood since the pioneering work of Goeppert-Mayer, Haxel, Jensen and
Suess.They realized that the experimental evidence for nuclear magic numbers
could be explained by introducing a strong spin-orbit interaction in the
nuclear shell model potential. However, our detailed knowledge of nuclear
forces and the mechanisms governing the structure of nuclei, in particular far
from stability, is still incomplete. In nuclei with equal neutron and proton
numbers (), the unique nature of the atomic nucleus as an object
composed of two distinct types of fermions can be expressed as enhanced
correlations arising between neutrons and protons occupying orbitals with the
same quantum numbers. Such correlations have been predicted to favor a new type
of nuclear superfluidity; isoscalar neutron-proton pairing, in addition to
normal isovector pairing (see Fig. 1). Despite many experimental efforts these
predictions have not been confirmed. Here, we report on the first observation
of excited states in nucleus Pd. Gamma rays emitted
following the Ni(Ar,2)Pd fusion-evaporation reaction
were identified using a combination of state-of-the-art high-resolution
{\gamma}-ray, charged-particle and neutron detector systems. Our results reveal
evidence for a spin-aligned, isoscalar neutron-proton coupling scheme,
different from the previous prediction. We suggest that this coupling scheme
replaces normal superfluidity (characterized by seniority coupling) in the
ground and low-lying excited states of the heaviest N = Z nuclei. The strong
isoscalar neutron- proton correlations in these nuclei are predicted to
have a considerable impact on their level structures, and to influence the
dynamics of the stellar rapid proton capture nucleosynthesis process.Comment: 13 pages, 3 figure
- …