70 research outputs found

    How consistently do physicians diagnose and manage drug-induced interstitial lung disease? Two surveys of European ILD specialist physicians

    Get PDF
    Introduction Currently there are no general guidelines for diagnosis or management of suspected drug-induced (DI) interstitial lung disease (ILD). The objective was to survey a sample of current European practice in the diagnosis and management of DI-ILD, in the context of the prescribing information approved by regulatory authorities for 28 licenced drugs with a recognised risk of DI-ILD. Methods Consultant physicians working in specialist ILD centres across Europe were emailed two surveys via a website link. Initially, opinion was sought regarding various diagnostic and management options based on seven clinical ILD case vignettes and five general questions regarding DI-ILD. The second survey involved 29 statements regarding the diagnosis and management of DI-ILD, derived from the results of the first survey. Consensus agreement was defined as 75% or greater. Results When making a diagnosis of DI-ILD, the favoured investigations used (other than computed tomography) included pulmonary function tests, bronchoscopy and blood tests. The preferred method used to decide when to stop treatment was a pulmonary function test. In the second survey, the majority of the statements were accepted by the 33 respondents, with only four of 29 statements not achieving consensus when the responses “agree” and “strongly agree” were combined as one answer. Conclusion The two surveys provide guidance for clinicians regarding an approach to the diagnosis and management of DI-ILD in which the current evidence base is severely lacking, as demonstrated by the limited information provided by the manufacturers of the drugs associated with a high risk of DI-ILD that we reviewed

    The Association of Baseline and Longitudinal Change in Endothelial Microparticle Count with Mortality in Chronic Kidney Disease

    Get PDF
    © 2017 S. Karger AG, Basel. Background: Chronic kidney disease (CKD) is associated with a unique milieu of vascular pathology, and effective biomarkers of active vascular damage are lacking. A candidate biomarker is the quantification of circulating endothelial microparticles (EMPs). This study observed baseline and longitudinal EMP change (Î EMP) and established the association of these with all-cause mortality and cardiovascular events in CKD. Method: An observational study in adults with CKD (estimated glomerular filtration rate [eGFR] <60 mL/min/1.73 m 2). EMPs were quantified by flow cytometry of platelet poor plasma in 2 samples 12 months apart and categorised as EMP if AnnexinV+/CD31+/CD42b-EMPs were compared between primary renal diagnoses, and correlations between EMP/Î EMP and other parameters made. Adjusted hazard ratios (HRs) for time to all-cause mortality and cardiovascular events were calculated for log-transformed EMP and Î EMP using a Cox proportional hazard model. Results: There were 123 patients (age 63 ± 11 years, systolic blood pressure 135 ± 18 mm Hg, eGFR 32 ± 16 mL/min/1.73 m 2). The median baseline EMP count was 144/μL (range 10-714/μL). EMPs were numerically the highest in autosomal dominant polycystic kidney disease (253 [41-610]). An increase in urine protein:creatinine ratio was associated with an increase in EMP (co-efficient 0.21, p = 0.02). The adjusted HR for all-cause mortality for EMP was 8.20 (1.67-40.2, p = 0.01) and for Î EMP was 2.69 (0.04-165, p = 0.64). There was no association between EMP or Î EMP and cardiovascular events. Conclusion: Although EMP count was a significant marker of mortality risk, longitudinal change was not. This may reflect disease-specific EMP behaviour and the limitation of EMP as a generalised biomarker in CKD

    Imaging biomarkers of lung ventilation in interstitial lung disease from <sup>129</sup>Xe and oxygen enhanced <sup>1</sup>H MRI

    Get PDF
    Purpose: To compare imaging biomarkers from hyperpolarised 129Xe ventilation MRI and dynamic oxygen-enhanced MRI (OE-MRI) with standard pulmonary function tests (PFT) in interstitial lung disease (ILD) patients. To evaluate if biomarkers can separate ILD subtypes and detect early signs of disease resolution or progression. Study type: Prospective longitudinal. Population: Forty-one ILD (fourteen idiopathic pulmonary fibrosis (IPF), eleven hypersensitivity pneumonitis (HP), eleven drug-induced ILD (DI-ILD), five connective tissue disease related-ILD (CTD-ILD)) patients and ten healthy volunteers imaged at visit 1. Thirty-four ILD patients completed visit 2 (eleven IPF, eight HP, ten DIILD, five CTD-ILD) after 6 or 26 weeks. Field strength/sequence: MRI was performed at 1.5 T, including inversion recovery T1 mapping, dynamic MRI acquisition with varying oxygen levels, and hyperpolarised 129Xe ventilation MRI. Subjects underwent standard spirometry and gas transfer testing. Assessment: Five 1H MRI and two 129Xe MRI ventilation metrics were compared with spirometry and gas transfer measurements. Statistical test: To evaluate differences at visit 1 among subgroups: ANOVA or Kruskal-Wallis rank tests with correction for multiple comparisons. To assess the relationships between imaging biomarkers, PFT, age and gender, at visit 1 and for the change between visit 1 and 2: Pearson correlations and multilinear regression models. Results: The global PFT tests could not distinguish ILD subtypes. Percentage ventilated volumes were lower in ILD patients than in HVs when measured with 129Xe MRI (HV 97.4 ± 2.6, CTD-ILD: 91.0 ± 4.8 p = 0.017, DI-ILD 90.1 ± 7.4 p = 0.003, HP 92.6 ± 4.0 p = 0.013, IPF 88.1 ± 6.5 p < 0.001), but not with OE-MRI. 129Xe reported more heterogeneous ventilation in DI-ILD and IPF than in HV, and OE-MRI reported more heterogeneous ventilation in DI-ILD and IPF than in HP or CTD-ILD. The longitudinal changes reported by the imaging biomarkers did not correlate with the PFT changes between visits. Data conclusion: Neither 129Xe ventilation nor OE-MRI biomarkers investigated in this study were able to differentiate between ILD subtypes, suggesting that ventilation-only biomarkers are not indicated for this task. Limited but progressive loss of ventilated volume as measured by 129Xe-MRI may be present as the biomarker of focal disease progresses. OE-MRI biomarkers are feasible in ILD patients and do not correlate strongly with PFT. Both OE-MRI and 129Xe MRI revealed more spatially heterogeneous ventilation in DI-ILD and IPF

    Management and treatment of children, young people and adults with systemic lupus erythematosus: British Society for Rheumatology guideline scope

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the British Society for Rheumatology.The objective of this guideline is to provide up-to-date, evidence-based recommendations for the management of SLE that builds upon the existing treatment guideline for adults living with SLE published in 2017. This will incorporate advances in the assessment, diagnosis, monitoring, non-pharmacological and pharmacological management of SLE. General approaches to management as well as organ-specific treatment, including lupus nephritis and cutaneous lupus, will be covered. This will be the first guideline in SLE using a whole life course approach from childhood through adolescence and adulthood. The guideline will be developed with people with SLE as an important target audience in addition to healthcare professionals. It will include guidance related to emerging approved therapies and account for National Institute for Health and Care Excellence Technology Appraisals, National Health Service England clinical commissioning policies and national guidance relevant to SLE. The guideline will be developed using the methods and rigorous processes outlined in ‘Creating Clinical Guidelines: Our Protocol’ by the British Society for Rheumatology

    Implementable deep learning for multi-sequence proton MRI lung segmentation: a multi-center, multi-vendor, and multi-disease study

    Get PDF
    Background Recently, deep learning via convolutional neural networks (CNNs) has largely superseded conventional methods for proton (1H)-MRI lung segmentation. However, previous deep learning studies have utilized single-center data and limited acquisition parameters. Purpose Develop a generalizable CNN for lung segmentation in 1H-MRI, robust to pathology, acquisition protocol, vendor, and center. Study type Retrospective. Population A total of 809 1H-MRI scans from 258 participants with various pulmonary pathologies (median age (range): 57 (6–85); 42% females) and 31 healthy participants (median age (range): 34 (23–76); 34% females) that were split into training (593 scans (74%); 157 participants (55%)), testing (50 scans (6%); 50 participants (17%)) and external validation (164 scans (20%); 82 participants (28%)) sets. Field Strength/Sequence 1.5-T and 3-T/3D spoiled-gradient recalled and ultrashort echo-time 1H-MRI. Assessment 2D and 3D CNNs, trained on single-center, multi-sequence data, and the conventional spatial fuzzy c-means (SFCM) method were compared to manually delineated expert segmentations. Each method was validated on external data originating from several centers. Dice similarity coefficient (DSC), average boundary Hausdorff distance (Average HD), and relative error (XOR) metrics to assess segmentation performance. Statistical Tests Kruskal–Wallis tests assessed significances of differences between acquisitions in the testing set. Friedman tests with post hoc multiple comparisons assessed differences between the 2D CNN, 3D CNN, and SFCM. Bland–Altman analyses assessed agreement with manually derived lung volumes. A P value of <0.05 was considered statistically significant. Results The 3D CNN significantly outperformed its 2D analog and SFCM, yielding a median (range) DSC of 0.961 (0.880–0.987), Average HD of 1.63 mm (0.65–5.45) and XOR of 0.079 (0.025–0.240) on the testing set and a DSC of 0.973 (0.866–0.987), Average HD of 1.11 mm (0.47–8.13) and XOR of 0.054 (0.026–0.255) on external validation data. Data Conclusion The 3D CNN generated accurate 1H-MRI lung segmentations on a heterogenous dataset, demonstrating robustness to disease pathology, sequence, vendor, and center. Evidence Level 4. Technical Efficacy Stage 1

    Valuing Health Gain from Composite Response Endpoints for Multisystem Diseases

    Get PDF
    Objectives: This study aimed to demonstrate how to estimate the value of health gain after patients with a multisystem disease achieve a condition-specific composite response endpoint. Methods: Data from patients treated in routine practice with an exemplar multisystem disease (systemic lupus erythematosus) were extracted from a national register (British Isles Lupus Assessment Group Biologics Register). Two bespoke composite response endpoints (Major Clinical Response and Improvement) were developed in advance of this study. Difference-in-differences regression compared health utility values (3-level version of EQ-5D; UK tariff) over 6 months for responders and nonresponders. Bootstrapped regression estimated the incremental quality-adjusted life-years (QALYs), probability of QALY gain after achieving the response criteria, and population monetary benefit of response. Results: Within the sample (n = 171), 18.2% achieved Major Clinical Response and 49.1% achieved Improvement at 6 months. Incremental health utility values were 0.0923 for Major Clinical Response and 0.0454 for Improvement. Expected incremental QALY gain at 6 months was 0.020 for Major Clinical Response and 0.012 for Improvement. Probability of QALY gain after achieving the response criteria was 77.6% for Major Clinical Response and 72.7% for Improvement. Population monetary benefit of response was £1 106 458 for Major Clinical Response and £649 134 for Improvement. Conclusions: Bespoke composite response endpoints are becoming more common to measure treatment response for multisystem diseases in trials and observational studies. Health technology assessment agencies face a growing challenge to establish whether these endpoints correspond with improved health gain. Health utility values can generate this evidence to enhance the usefulness of composite response endpoints for health technology assessment, decision making, and economic evaluation

    Management and treatment of children, young people and adults with systemic lupus erythematosus: British Society for Rheumatology guideline scope

    Get PDF
    The objective of this guideline is to provide up-to-date, evidence-based recommendations for the management of SLE that builds upon the existing treatment guideline for adults living with SLE published in 2017. This will incorporate advances in the assessment, diagnosis, monitoring, non-pharmacological and pharmacological management of SLE. General approaches to management as well as organ-specific treatment, including lupus nephritis and cutaneous lupus, will be covered. This will be the first guideline in SLE using a whole life course approach from childhood through adolescence and adulthood. The guideline will be developed with people with SLE as an important target audience in addition to healthcare professionals. It will include guidance related to emerging approved therapies and account for National Institute for Health and Care Excellence Technology Appraisals, National Health Service England clinical commissioning policies and national guidance relevant to SLE. The guideline will be developed using the methods and rigorous processes outlined in ‘Creating Clinical Guidelines: Our Protocol’ by the British Society for Rheumatology

    Imaging atherosclerosis in rheumatoid arthritis: evidence for increased prevalence, altered phenotype and a link between systemic and localised plaque inflammation.

    Get PDF
    In rheumatoid arthritis (RA), chronic inflammation is thought to drive increased cardiovascular risk through accelerated atherosclerosis. It may also lead to a more high-risk plaque phenotype. We sought to investigate carotid plaque phenotype in RA patients using Dynamic Contrast-Enhanced MRI (DCE-MRI) and Fludeoxyglucose Positron Emission Tomography(FDG-PET). In this pilot study, RA patients and age/sex-matched controls were evaluated for cardiovascular risk factors and carotid plaque on ultrasound. Subjects with plaque >2 mm thick underwent DCE-MRI, and a subgroup of patients had FDG-PET. Comparison of MRI findings between groups and correlation between clinical, serological markers and imaging findings was undertaken. 130 patients and 62 controls were recruited. Plaque was more prevalent in the RA group (53.1% vs 37.0%, p = 0.038) and was independently associated with IL6 levels (HR[95%CI]: 2.03 [1.26, 3.26] per quartile). DCE-MRI data were available in 15 patients and 5 controls. Higher prevalence of plaque calcification was noted in RA, despite similar plaque size (73.3% vs 20%, p = 0.04). FDG-PET detected plaque inflammation in 12/13 patients scanned and degree of inflammation correlated with hs-CRP (r = 0.58, p = 0.04). This study confirms increased prevalence of atherosclerosis in RA and provides data to support the hypothesis that patients have a high-risk plaque phenotype

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Carotid artery volumetric measures associate with clinical ten-year cardiovascular (CV) risk scores and individual traditional CV risk factors in rheumatoid arthritis; a carotid-MRI feasibility study

    Get PDF
    Background: Common carotid artery intima-media thickness (CIMT), as measured by ultrasound, has utility in stratification of the accelerated cardiovascular risk seen in rheumatoid arthritis (RA); however, the technique has limitations. Carotid magnetic resonance imaging (MRI) is emerging as a useful research tool in the general population, but has yet to be applied in RA populations. Our objectives were to describe the utility of carotid artery MRI (carotid-MRI) in patients with RA in comparison to healthy controls and to describe the association with RA disease phenotype. Methods: Sixty-four patients with RA and no history of cardiovascular (CV) disease/diabetes mellitus were assessed for RA and CV profile, including homeostasis model assessment-estimated insulin resistance (HOMA-IR) and N-terminal pro-brain natriuretic peptide (NT-proBNP). All underwent carotid-MRI (3 T), and were compared to 24 healthy controls. Univariable analysis (UVA) and multivariable linear regression models (MVA) were used to determine associations between disease phenotype and carotid-MRI measures. Results: There were no significant differences in carotid arterial wall measurements between patients with RA and controls. Wall and luminal volume correlated with 10-year CV risk scores (adjusted as per 2017 European League Against Rheumatism (EULAR) guidance); rho = 0.33 (p = 0.012) and rho = 0.35 (p = 0.008), respectively, for Joint British Societies-2 risk score. In UVA, carotid-MRI volumetric measures predominantly were associated with traditional CV risk factors including age, ever-smoking and HOMA-IR (p < 0.05). Lower body mass index was associated with wall maximum thickness (r = − 0.25 p = 0.026). In MVA, age was independently associated with wall volume (B 1.13 (95% CI 0.32, 1.93), p = 0.007) and luminal volume (B 3.69 (95% CI 0.55, 6.83, p = 0.022), and RA disease duration was associated with luminal volume (B 3.88 (95% CI 0.80, 6.97), p = 0.015). Conclusions: This study demonstrates the utility of carotid-MRI in RA, reporting an association between three-dimensional measures in particular and CV risk scores, individual traditional CV risk factors and RA disease duration. Carotid-MRI in RA is a promising research tool in the investigation of CVD
    corecore