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Population: A total of 809 1H-MRI scans from 258 participants with various pulmonary pathologies (median age (range):
57 (6–85); 42% females) and 31 healthy participants (median age (range): 34 (23–76); 34% females) that were split into
training (593 scans (74%); 157 participants (55%)), testing (50 scans (6%); 50 participants (17%)) and external validation
(164 scans (20%); 82 participants (28%)) sets.
Field Strength/Sequence: 1.5-T and 3-T/3D spoiled-gradient recalled and ultrashort echo-time 1H-MRI.
Assessment: 2D and 3D CNNs, trained on single-center, multi-sequence data, and the conventional spatial fuzzy c-means
(SFCM) method were compared to manually delineated expert segmentations. Each method was validated on external
data originating from several centers. Dice similarity coefficient (DSC), average boundary Hausdorff distance (Average
HD), and relative error (XOR) metrics to assess segmentation performance.
Statistical Tests: Kruskal–Wallis tests assessed significances of differences between acquisitions in the testing set. Fried-
man tests with post hoc multiple comparisons assessed differences between the 2D CNN, 3D CNN, and SFCM. Bland–
Altman analyses assessed agreement with manually derived lung volumes. A P value of <0.05 was considered statistically
significant.
Results: The 3D CNN significantly outperformed its 2D analog and SFCM, yielding a median (range) DSC of 0.961 (0.880–
0.987), Average HD of 1.63 mm (0.65–5.45) and XOR of 0.079 (0.025–0.240) on the testing set and a DSC of 0.973 (0.866–
0.987), Average HD of 1.11 mm (0.47–8.13) and XOR of 0.054 (0.026–0.255) on external validation data.
Data Conclusion: The 3D CNN generated accurate 1H-MRI lung segmentations on a heterogenous dataset, demonstrating
robustness to disease pathology, sequence, vendor, and center.
Evidence Level: 4.
Technical Efficacy: Stage 1.

J. MAGN. RESON. IMAGING 2023.

Imaging of the lungs is a key component in the management

of patients with respiratory diseases and facilitates their

diagnosis, treatment planning, monitoring, and assessment.

Imaging modalities such as computed tomography (CT) and

proton MRI (1H-MRI) enable the visualization and quantifi-

cation of anatomical features within the lungs.1,2

High-resolution CT has traditionally represented the refer-

ence standard in clinical practice for structural lung imaging

due to its impeccable resolution (�1 mm3) and ubiquitous

availability.3 1H-MRI has historically been limited in the

management of patients with respiratory diseases due to the

low proton density and fast signal decay within the lungs,

which pose inherent challenges for the modality.4 However,

recent advances in sequence development and coil design

have improved structural detail via ultrashort and zero echo-

time sequences which increase the resolution to approxi-

mately that of CT (�1.5 mm3), enabling the use of 1H-MRI

in numerous pulmonary imaging applications.5 Furthermore,
1H-MRI uses non-ionizing radiation and therefore can be uti-

lized for pediatric patient care and treatment monitoring

where longitudinal imaging studies are required.

Segmentation of the lungs in 1H-MRI is required to

delineate the lung cavity from other nearby features and has

numerous applications, such as disease characterization,6

treatment planning7 and longitudinal assessment.8 Lung seg-

mentation is also required for the computation of quantitative

dynamic contrast-enhanced and oxygen-enhanced MRI,

which evaluate lung perfusion and ventilation, respectively.5

In addition, surrogates of ventilation can be derived from

non-contrast, multi-inflation 1H-MRI, requiring the segmen-

tation of the lung parenchyma at different volumes.9 Segmen-

tation of pathological lungs, in particular, represents a

challenge due to the relative similarity in signal intensity

between aerated and non-aerated lung tissue and the presence

of various pathological patterns such as ground glass opacities,

consolidation, and bronchiectasis.

Conventional image processing and machine learning

approaches have traditionally been used for lung segmenta-

tion in 1H-MRI; these include semi-automatic thresholding,

clustering and region growing methods.1 Spatial fuzzy

c-means (SFCM) is a clustering method that employs spatial

information to modify cluster membership and has been used

successfully as a semi-automated 1H-MRI lung segmentation

method.10,11 However, although these methods achieved

varying degrees of success, they remain semi-automated in

nature. Time-consuming manual correction is often required

to modify semi-automated methods based on MRI sequence

or readout parameters.

In recent years, deep learning (DL) has largely super-

seded classical image processing, such as thresholding, and

conventional machine learning, such as clustering, for medical

image segmentation applications. Convolutional neural net-

works (CNNs) have emerged as the dominant DL approach

and have been used in numerous pulmonary image segmenta-

tion applications. A recent review of DL applications in lung

image segmentation indicated that studies predominantly uti-

lized CT imaging and single-center datasets.12 This leads to

reduced performance when deploying DL models across mul-

tiple centers due to variations in training and testing set dis-

tributions.13 Due to variations in MR acquisition protocols

or vendor, the large-scale segmentation of 1H-MRI represents

a significant challenge for the deployment of implementable

DL models. Multi-center datasets have been used for other

DL-based lung segmentation applications such as the use of

the COPDGene dataset in CT fissure detection and segmen-

tation14; however, large-scale DL investigations are yet to be

conducted for 1H-MRI lung segmentation. Consequently,

there is a pressing need for a multi-center implementable
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approach to 1H-MRI segmentation that can be deployed

regardless of specific MR imaging parameters or patient

pathology.

In this study, we hypothesized that a generalizable DL-

based segmentation algorithm can accurately delineate the

lung cavity across a multi-center, multi-vendor, and multi-

disease 1H-MRI dataset. We aimed to develop and compare
1H-MRI DL segmentation networks with a conventional seg-

mentation approach to automatically segment the lungs on
1H-MRI scans.

Materials and Methods

Patient Data
All studies received ethical approval from the relevant institutional

review boards with participants (or their guardians) providing

informed written consent. Appropriate consent and permissions have

been granted by the sponsors to utilize these data for retrospective

purposes. All data were anonymized, and all investigations were con-

ducted in accordance with the appropriate guidelines and

regulations.
1H-MRI scans used in this study were retrospectively collected

from several research imaging studies and patients referred for clini-

cal pulmonary MRI scans. The dataset comprised 809 1H-MRI

scans from 31 healthy participants with a median age (range) of

34 (23, 76); 66% males, 34% females and 258 participants with var-

ious pulmonary pathologies with a median age (range) of 57 (6, 85);

58% males, 42% females. Scans acquired at different inflation levels,

longitudinal, and intrasession reproducibility scans were included in

the dataset, resulting in a larger number of 3D scans than partici-

pants. A breakdown of patient data and demographics, stratified by

disease, is included in Table 1.

1H-MRI Protocol
The dataset used in this study contained 1H-MRI acquired with a

range of sequences and readout parameters from three distinct cen-

ters in the United Kingdom. 1H-MRI acquisition details are summa-

rized in Table 2.

Spoiled-gradient echo (SPGR) and ultrashort echo-time

(UTE) 1H-MRI scans were collected from center 1 and originated

from several research and clinical studies conducted between 2014

and 2022. The data were used for training and testing DL networks

containing a total of 643 scans from 207 participants and included

five distinct MR sequence and readout parameter configurations (see

Table 2). These acquisitions included differences in scanner manu-

facturer, sequence, field strength, lung inflation level, in-plane reso-

lution, and slice thickness.

SPGR 1H-MRI scans collected from center 2 and center

3 and originated from a single clinical study conducted between

2021 and 2022. They were used for external validation with a total

of 110 scans from 55 participants (center 2) and 54 scans from

27 participants (center 3) acquired 3 to 12 months after hospitaliza-

tion due to COVID-19. Each participant underwent an inspiratory

and expiratory scan, resulting in two scans per subject. Acquisition

details are provided in Table 2.

1H-MRI Segmentations
All 1H-MRI scans (n = 809) had corresponding, manually edited

segmentations, representing the lung parenchyma. These segmenta-

tions were used as ground-truth delineations of the lung cavity vol-

ume, exclusive of major airways. Segmentations were pooled

retrospectively and were originally generated manually or using a

variety of semi-automated methods.10,15,16 Subsequently, they were

manually reviewed and edited by several experienced observers (B.A.

T had 10 years, H.M had 7 years, G.J.C had 6 years, P.J.C.H had

5 years, A.M.B had 5 years, H.F.C had 4 years, L.J.S had 3.5 years,

and J.R.A had 3 years of experience in editing lung segmentations)

with each observer segmenting different cases within the dataset

using the ITK-SNAP software (ITK-SNAP, University of Pennsylva-

nia, PA, USA). Airways were removed down to the third generation,

and care was taken to ensure that no more than two connected com-

ponents were present in the segmentations, thus removing any

potentially incorrect stray voxels.

Convolutional Neural Networks
The proposed networks consisted of a 2D and 3D implementation

of the UNet CNN.17 All networks were trained using the medical

imaging DL framework NiftyNet (0.6.0)18 built on top of Ten-

sorFlow (1.14).19 To ensure an adequate comparison between the

two CNNs, training was performed on an NVIDIA Tesla V100

graphical processing unit (GPU) (Nvidia Corporation, Santa Clara,

CA, USA) with 16 GB of RAM for the same length of time, thereby

normalizing the performance in terms of computational efficiency

and resources. Each network was trained for 120 hours.

2D UNET. A 2D UNet20 architecture was used with varying kernel

sizes from 3 � 3 � 3 to 1 � 1 � 1 depending on the layer of the

network. An input spatial window size of 128 � 128 � 1 and a vol-

ume padding size of 24 � 24 � 0 was implemented to maintain

consistent image dimensions. Each network was trained with a par-

tial rectified linear unit (PReLU) activation function,21 Adam opti-

mization22 and binary cross-entropy loss function. A learning rate of

1 � 10�5 and batch size of 1 were used for 123 training epochs. A

decay of 1 � 10�6 and L2 regularization were implemented to mini-

mize overfitting.

3D UNET. A 3D implementation of the UNet, referred to as the

nn-UNet was used.17 Convolution operations varied in kernel size

from 3 � 3 � 3 to 1 � 1 � 1 depending on the layer of the net-

work. The network also made use of instance and batch normaliza-

tion to reduce the covariate shift between network layers. An

isotropic spatial window size of 96 � 96 � 96 was used. Each net-

work was trained with a PReLU activation function,21 Adam optimi-

zation22 and binary cross-entropy loss function. A learning rate of

1 � 10�5 and batch size of 2 were used for 227 training epochs. A

decay of 1 � 10�6 and L2 regularization were selected to minimize

overfitting.

DATA AUGMENTATION. Data augmentation was employed

before 3D scans were fed into the network to increase the variability

of the training images. The augmentation method did not increase

the total size of the dataset but instead used random rotation and

scaling factors to modify scans before entering the network. Rotation

3
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angles of �10� to 10� and scaling values of �10% to 10% were

applied for each epoch, selected based on previous research investiga-

tions.23 Augmentation techniques were constrained to the above

limits to produce physiologically plausible scans.

TRAINING AND TESTING SETS. Fifty scans from 50 partici-

pants, with 10 scans from each distinct acquisition in center 1, were

randomly selected as a testing set. This constituted approximately

8% of the total number of scans from center 1 and 25% of the total

number of participants. This was done to ensure that no participant

was included concurrently in the training and testing sets and that

only one scan per participant was included in the testing set. In

addition, two external validation cohorts from centers 2 and 3 were

used to further validate the DL frameworks. Therefore, as a propor-

tion of the total dataset, approximately 27% and 46% of the data in

terms of scans and participants were used for testing, respectively.

Numbers of scans and participants in the training, testing, and exter-

nal validation datasets are shown in Table 3.

Conventional Approach: Spatial Fuzzy c-Means
A conventional approach commonly used for 1H-MRI segmentation,

namely, SFCM, was used.10 Images were initially bilaterally filtered

to remove noise and maintain edges.24 SFCM differs from generic

FCM algorithms in that it assumes that voxels in close spatial prox-

imity will have a high correlation with each other and hence have

similarly high membership to the same cluster. This spatial informa-

tion will modify the membership value if, for instance, the voxel is

noisy yet highly spatially correlated and consequently would have

been incorrectly classified. The optimal number of clusters was man-

ually selected by A.M.B based on previous experience in the clinical

translation of this technique. Traditional FCM methods assign

N pixels to C clusters via fuzzy memberships yet do not make use of

nearby pixels during the iteration process. By taking into account,

the membership of voxels within a predefined window (5 � 5 in this

work), SFCM will weigh the central voxel depending on the pro-

vided weighting variables25 and thus is expected to generate more

accurate segmentations.10

Quantitative Evaluation
Segmentations generated by DL and SFCM were compared to manu-

ally annotated segmentations and quantitatively evaluated using the fol-

lowing voxel-based evaluation metrics. The overlap-based Dice

similarity coefficient (DSC) metric assesses the overlap between ground

truth (GT) and output (OP) segmentations and is defined as follows26:

DSC¼ 2
jOP \GT j

jOPjþ jGT j
ð1Þ

The average boundary Hausdorff distance (Average HD)

assesses the conformity of boundaries between GT and OP segmen-

tations and is defined as follows27:

HD OP,GTð Þ¼ max h OP,GTð Þ,h GT ,OPÞð Þð ð2Þ

where h OP,GTð Þ represents the directed Hausdorff distance

between the sets of OP and GT voxels at the boundary, op represents

an individual boundary voxel in the set OP, and gt represents an

individual boundary voxel in GT . Further, h OP,GTð Þ is defined as:

h OP,GTð Þ¼ max
op � OP

min
gt � GT

OP�GTk k ð3Þ

where OP�GTk k is the Euclidean distance between OP and GT .

TABLE 1. Summary of Patient Data

Disease
Number of
Subjects

Number of
Scans

Agea Sexa

Median
(range)

Frequency
(%)

Asthma 17 89 50 (15, 73) 5 M (29%), 12 F (71%)

Post-COVID-19 147 376 57 (21, 83) 97 M (66%), 49 F (34%)

Cystic fibrosis 26 82 18 (6, 48) 12 M (46%), 14 F (54%)

Healthy 31 103 34 (23, 76) 19 M (66%), 10 F (34%)

ILDb 46 83 69 (44, 83) 25 M (54%), 21 F (46%)

Investigation for possible airways
disease

4 15 50 (46, 64) 0 M (0%), 4 F (100%)

Lung cancer 18 59 72 (35, 85) 11 M (61%), 7 F (39%)

Total 289 809 56 (6, 85) 168 M (59%), 117 F (41%)

aPatient demographic data were unavailable for four participants.
bContains connective tissue disease-associated interstitial lung disease (CTD-ILD), hypersensitivity pneumonitis (HP), idiopathic pulmo-
nary fibrosis (IPF) and drug-induced ILD (DI-ILD).
M = male; F = female; ILD = interstitial lung disease.
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TABLE 2. 1H-MRI Acquisition Details

Acquisition
1

Acquisition
2

Acquisition
3

Acquisition
4

Acquisition
5

External
Validation 1

External
Validation 2

Centre Center 1 Center 1 Center 1 Center 1 Center 1 Center 2 Center 3

Scanner GE HDx Philips
Ingenia

GE HDx GE HDx GE HDx Siemens Skyra Siemens Prisma

Field strength 1.5 T 3 T 1.5 T 1.5 T 1.5 T 3 T 3 T

Coil 8-channel cardiac Body 8-element cardiac Body Body Body Body

Sequence UTE (kooshball) SPGR SPGR SPGR SPGR SPGR SPGR

Sequence dimension 3D 3D 3D 3D 3D 3D 3D

Acquisition
orientation

Axial Coronal Coronal Coronal Coronal Coronal Coronal

Inflation level FRC (free-breathing gated on
expiration)

INSP/EXP RV, TLC, FRC
+ baga

FRC + baga FRC + baga INSP/EXP INSP/EXP

Slice thickness (mm) �1.5 5 3 or 4 5 10 3 3

Interslice distance
(mm)

�1.5 2.5 3 or 4 5 10 3 3

In-plane resolution
(mm2)

�1.5 � 1.5 �2 � 2 �3 � 3 or
�4 � 4

�4 � 4 �4 � 4 �3.13 � 3.13 �3.13 � 3.13

TR/TE
(milliseconds)

2.8/0.078 1.9/0.6 1.8/0.7 1.9/0.6 1.9/0.6 1.9/0.7 1.9/0.7

Flip angle (�) 4 3 3 5 5 3 3

Field of view (cm) �35–48 �38–40 �35–48 �35–48 �35–48 �40 �40

Bandwidth (kHz) �125 �321.4 �166.6 �166.6 �166.6 �200.3 �200.3

aBag volume was titrated based on standing height and ranges from 400 mL to 1 L.
FRC = functional residual capacity; RV = residual volume; TLC = total lung capacity; INSP = inspiratory; EXP = expiratory; SPGR = spoiled-gradient recalled echo; UTE = ultrashort
echo time.
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The relative error metric (XOR) is an error-based metric,

which is expected to correlate with the manual editing time required

to correct the OP segmentation28 and is defined as follows:

XOR¼
jOP \GT 0jþ jOP 0\GT j

jGT j
ð4Þ

where OP0 and GT0 are the complements of OP and GT,

respectively.

Statistical Analysis
The normality of the data was assessed using Shapiro–Wilk tests; if

normality was not satisfied, non-parametric tests were conducted.

Kruskal–Wallis tests for multiple comparisons were used to assess

differences in segmentation performance between center 1 image

acquisitions (see Table 2). One-way repeated-measures analysis of

variance (ANOVA) with Tukey’s test or Friedman tests with

corrected Dunn’s method for post hoc multiple comparisons were

used to assess differences in segmentation performance between the

2D UNet, 3D UNet and SFCM methods for center 1 data. Bland–

Altman analyses were conducted to compare the 2D UNet-, 3D

UNet- and SFCM-generated segmentations on external validation

data. ANOVA or Friedman tests were used to assess differences

between segmentation methods on external validation cohorts from

centers 2 and 3. Furthermore, independent t-tests with Welch’s

correction or Mann–Whitney U tests were used to assess differences

between expiratory and inspiratory segmentations in external valida-

tion data. Statistical analyses were conducted using GraphPad Prism

9.2.0 (GraphPad Software, San Diego, CA). A P value of <0.05 was

considered statistically significant.

Results

Qualitative Evaluation

Figure 1 shows the segmentations generated by the 2D UNet,

3D UNet and SFCM methods in comparison to the manu-

ally edited segmentations for six cases, where a range of pul-

monary pathologies, centers, and MR sequences were chosen

to demonstrate each method’s performance. For all cases, the

3D UNet exhibited improved performance over its 2D analog

and the SFCM method; this superior performance was

maintained for the external validation dataset. Cases with

challenging features such as artifacts, ground glass opacities,

consolidation and bronchiectasis are displayed in Fig. 2 along

with expert, DL and SFCM segmentations. The 3D UNet

exhibited improved performance on these cases compared to

the other approaches tested; however, some differences were

observed with expert segmentations, particularly when areas

TABLE 3. Breakdown of Training and Testing Strategy With External Validation

Image Acquisition Number of Scans Number of Participants

Training Total 593 157a

Acquisition 1 89 44

Acquisition 2 78 39

Acquisition 3 242 65

Acquisition 4 99 26

Acquisition 5 85 33

Testing Total 50 50

Acquisition 1 10 10

Acquisition 2 10 10

Acquisition 3 10 10

Acquisition 4 10 10

Acquisition 5 10 10

External validation Total 166 82

External validation 1 110 55

External validation 2 54 27

aThe number of unique participants in the training set. The totals for each acquisition in the training set are greater than this number as
some participants have scans from multiple acquisitions.
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of high signal intensity were adjacent to the border of the

lung cavity.

Center 1 Evaluation

Quantitative results for the 2D UNet, 3D UNet and SFCM

method are displayed in Table 4. Results demonstrated that

the 3D UNet generated superior segmentations across all

three metrics for each acquisition. The 3D UNet achieved a

median (range) DSC, Average HD and XOR of 0.961

(0.880, 0.987), 1.63 mm (0.65, 5.45) and 0.079 (0.025,

0.240), respectively, on testing data from center 1. Both the

DL-based approaches outperformed the SFCM method across

all three metrics. Network training performance and conver-

gence for the 3D and 2D UNets are illustrated graphically in

the Supplementary material S1. Our 3D UNet trained model

is publicly available at https://github.com/POLARIS-

Sheffield/1H-MRI-segmentation. In Fig. 3, performance

between segmentation methods is shown per MR acquisition

configuration for all metrics. The 3D UNet significantly out-

performed the SFCM method in all comparisons and the 2D

UNet in almost all comparisons. The 2D UNet statistically

outperformed the SFCM on acquisition 1 data only. Figure 4

displays graphically the performance of the (a) 3D UNet,

(b) 2D UNet and (c) SFCM methods for each metric. All

methods exhibited statistically significant differences between

some of the acquisitions; however, the 3D UNet exhibited

the smallest range between least and best performing MR

acquisition. The 3D UNet produced the most accurate seg-

mentations for a single acquisition (acquisition 3) when using

all three metrics; in contrast, the 2D UNet and SFCM

methods did not consistently exhibit superior performance for

a specific acquisition across metrics.

External Data Evaluation

As shown in Table 4, improved performance over center

1 testing data was exhibited on the external validation

cohorts, achieving a median (range) DSC, Average HD and

XOR of 0.973 (0.866, 0.987), 1.11 mm (0.47, 8.13) and

0.054 (0.026, 0.255), respectively. The 3D UNet signifi-

cantly outperformed the 2D UNet and SFCM for all three

FIGURE 1: Example coronal slices showing the 1H-MRI scans (row 1), the 1H-MRI scans overlaid with manual segmentations (row 2)
and segmentations generated by the 3D UNet, 2D UNet and spatial fuzzy c-means (SFCM) methods (rows 3–5) for six representative
cases. Dice similarity coefficient (DSC) and average Hausdorff distance (HD) values are provided for each case. Example slices were
left uncropped to display differences in field of view and arm position between acquisitions.
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metrics across 164 external validation scans using the DSC,

Average HD, and XOR metrics; distribution and comparison

of segmentation performance are displayed in the Supplemen-

tary material S1. Figure 5 shows Bland–Altman analyses com-

paring the lung parenchymal volume of DL methods and

SFCM to manually derived lung volumes for the 164 external

validation scans from centers 2 and 3. The 3D UNet

exhibited a significantly reduced bias compared to other

methods tested and achieved a bias of 0.063 liters with limits

of agreement (LoA) �0.099 to 0.225 liters.

Figure 6 displays a comparison of segmentation perfor-

mance between expiratory and inspiratory scans in data from

centers 2 and 3 for all metrics used. For the 2D UNet and

the SFCM methods, inspiratory scans were segmented more

accurately than expiratory scans for all metrics. This was repli-

cated for the 3D UNet using the DSC and XOR metrics;

however, no difference was observed between inspiratory and

expiratory scans using the Average HD metric (P = 0.06).

Discussion

In this study, the proposed implementable DL segmentation

algorithm produced accurate lung segmentations on a large,

multi-center, multi-acquisition, multi-disease 1H-MRI

dataset. Our proposed 3D CNN significantly outperformed a

2D CNN and a conventional machine learning segmentation

method. In addition, it was validated on external data from

two centers, acquired on different vendor scanners, demon-

strating minimal bias compared to manually edited lung vol-

umes. Differences in lung segmentation performance were

observed between scans acquired at inspiratory and expiratory

inflation levels.

FIGURE 2: Example coronal slices showing 1H-MRI scans that exhibit challenging features such as artifacts, ground glass opacities,
consolidation, and bronchiectasis for five cases with corresponding expert, deep learning, and spatial fuzzy c-means (SFCM)
segmentations. Dice similarity coefficient (DSC) values are provided for each case and method.
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TABLE 4. Quantitative Results for the Testing Set (n = 50), External Validation 1 (n = 110), and External Validation 2 (n = 54) Using the DSC, Average HD (mm),

and XOR metrics for the SFCM, 2D UNet, and 3D UNet methods

Acquisition

SFCM 2D UNet 3D UNet

DSC
Average
HD (mm) XOR DSC

Average
HD (mm) XOR DSC

Average
HD (mm) XOR

Median
(range)

Median
(range)

Median
(range)

Median
(range)

Median
(range)

Median
(range)

Median
(range)

Median
(range)

Median
(range)

Acquisition 1 0.871 (0.770,
0.919)

4.67 (3.20,
6.78)

0.241 (0.157,
0.397)

0.935 (0.897,
0.960)

1.86 (1.27,
2.83)

0.124 (0.079,
0.191)

0.942 (0.917,
0.974)

1.57 (0.96,
3.28)

0.111 (0.052,
0.156)

Acquisition 2 0.885 (0.484,
0.945)

5.74 (2.90,
19.9)

0.209 (0.105,
0.682)

0.920 (0.874,
0.953)

2.70 (1.54,
3.66)

0.152 (0.093,
0.227)

0.968 (0.951,
0.974)

1.03 (0.93,
1.30)

0.065 (0.051,
0.098)

Acquisition 3 0.879 (0.438,
0.956)

7.71 (3.43,
11.1)

0.217 (0.085,
0.719)

0.960 (0.910,
0.974)

2.48 (1.20,
8.43)

0.080 (0.051,
0.172)

0.979 (0.964,
0.987)

1.10 (0.65,
2.16)

0.043 (0.025,
0.070)

Acquisition 4 0.942 (0.793,
0.979)

3.57 (2.08,
9.12)

0.112 (0.042,
0.343)

0.942 (0.915,
0.968)

4.17 (2.60,
5.01)

0.114 (0.065,
0.163)

0.959 (0.926,
0.975)

2.35 (1.53,
4.99)

0.083 (0.048,
0.145)

Acquisition 5 0.898 (0.796,
0.961)

5.64 (1.96,
8.78)

0.187 (0.075,
0.362)

0.921 (0.848,
0.949)

3.71 (2.28,
8.49)

0.156 (0.102,
0.291)

0.942 (0.880,
0.961)

2.80 (1.68,
5.45)

0.111 (0.078,
0.240)

Testing total 0.896 (0.438,
0.979)

5.28 (1.96,
19.9)

0.195 (0.042,
0.719)

0.938 (0.848,
0.974)

2.86 (1.20,
8.49)

0.123 (0.051,
0.291)

0.961 (0.880,
0.987)

1.63 (0.65,
5.45)

0.079 (0.025,
0.240)

External
validation 1

0.831 (0.295,
0.949)

5.07 (2.82,
54.1)

0.290 (0.097,
0.918)

0.894 (0.477,
0.959)

4.58 (1.64,
16.7)

0.197 (0.080,
0.688)

0.973 (0.866,
0.986)

1.19 (0.53,
8.13)

0.054 (0.028,
0.255)

External
validation 2

0.808 (0.170,
0.925)

5.88 (3.35,
71.9)

0.324 (0.141,
0.907)

0.902 (0.272,
0.954)

3.47 (1.79,
44.8)

0.185 (0.090,
0.912)

0.972 (0.914,
0.987)

0.96 (0.47,
3.86)

0.056 (0.026,
0.159)

External
validation
total

0.819 (0.170,
0.949)

5.36 (2.82,
71.9)

0.307 (0.097,
0.918)

0.894 (0.272,
0.959)

4.08 (1.64,
44.8)

0.197 (0.080,
0.912)

0.973 (0.866,
0.987)

1.11 (0.47,
8.13)

0.054 (0.026,
0.255)

Median (range) values are provided for each acquisition protocol, the combined testing set, and the external validation sets.
SFCM = spatial fuzzy c-means; DSC = Dice similarity coefficient; Average HD = average boundary Hausdorff distance; XOR = relative error metric.
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The dataset used is diverse in terms of pulmonary

pathology, center in which the scans were acquired, and

image acquisition parameters, including sequence, field

strength and vendor. This results in a segmentation network

that is invariant to the specifics of the 1H-MRI scans ana-

lyzed, relying on relevant anatomical features present in
1H-MRI scans to generate segmentations. These anatomical

features remain consistent regardless of acquisition parameters

in contrast to other features that varied between acquisitions,

such as noise patterns, arm position, or location of the lungs

within the scan. CT lung segmentation methods have

adopted the large, multi-center COPDGene dataset for vali-

dation of DL segmentation models to increase generalizabil-

ity.14 In this work, we used a large multi-center, multi-

vendor 1H-MRI dataset to demonstrate the generalizability of

the DL model, allowing it to potentially be deployed across

numerous centers; this could have a large impact on the pul-

monary MRI field.

Furthermore, our proposed 3D UNet demonstrated

high-quality segmentations across a range of pulmonary

pathologies. This exemplary performance largely extends to

particularly challenging cases such as participants with idio-

pathic pulmonary fibrosis. Fibrotic lungs contain an increased

presence of challenging pathologies, such as ground glass

opacities and honeycombing, which lead to increased hetero-

geneity within the lung parenchyma and consequently repre-

sent challenging cases for segmentation algorithms.29

Similarly, 1H-MRI scans from participants who were previ-

ously hospitalized for COVID-19 can exhibit consolidation

and reticulation patterns that reduce the difference in signal

intensity between lung and non-lung tissue,30 which our pro-

posed model adequately accounts for.

Quantitative results and statistical tests indicated that,

for all acquisitions, across all metrics, the 3D UNet signifi-

cantly outperformed the SFCM method. For the majority of

acquisitions and metrics, the 3D UNet significantly out-

performed its 2D analog. When tested on external validation

data, some degree of overfitting was present in the 2D UNet

exemplified by a reduction in performance compared to test-

ing set data from center 1; this behavior was not exhibited by

the 3D UNet. Differences in performance between the 2D

and 3D UNets are potentially due to the volumetric nature

of the 1H-MRI scans, which were acquired using 3D

sequences. In addition, anatomical features primarily occur

across multiple slices and thus a 3D approach to segmenta-

tion may better encapsulate these features. Comparison

FIGURE 3: Comparison of segmentation performance for each of the methods using the (a) Dice similarity coefficient (DSC),
(b) average Hausdorff distance (HD), and (c) relative error (XOR) metrics. Significances of differences between deep learning
methods and spatial fuzzy c-means (SFCM) as assessed by Friedman tests with Dunn’s method are displayed for each metric.
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between DL networks was limited due to the differences in

batch size and spatial windowing between the two CNNs as a

result of differing memory constraints. It is possible that these

differences may impact network comparisons; however,

computational resources remained consistent between 2D

and 3D CNNs and therefore the computational efficiency of

the networks was assessed alongside segmentation

performance.

FIGURE 4: Comparison of segmentation performance across acquisition protocols for the Dice similarity coefficient (DSC), average
Hausdorff distance (HD) and relative error (XOR) metrics for (a) 3D UNet, (b) 2D UNet, and (c) spatial fuzzy c-means (SFCM)
methods. Significant differences between image acquisitions as assessed by Kruskal–Wallis tests are given for each metric.

FIGURE 5: Bland–Altman agreement analysis of lung volumes for 164 external validation set cases compared to volumes derived
from manual segmentations for (a) 3D UNet (b) 2D UNet, and (c) spatial fuzzy c-means (SFCM) methods.
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FIGURE 6: Comparison of the combined external validation datasets stratified by inspiratory and expiratory scans using the Dice
similarity coefficient (DSC), average Hausdorff distance (HD) and relative error (XOR) metrics for (a) 3D UNet, (b) 2D UNet, and
(c) spatial fuzzy c-means (SFCM) methods. P values between inspiratory and expiratory scans are shown.
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Several investigators have leveraged CNNs for pulmo-

nary MRI segmentation. For example, Zha et al used a 2D

UNet to segment the lung cavity on UTE 1H-MRI scans,

achieving a mean DSC of 0.96 across both lungs. However,

the generalizability of this method was not demonstrated due

to the small dataset of the study, which only contained

45 UTE 1H-MRI scans from a limited number of diseases.31

Tustison et al evaluated a 3D UNet CNN for isotropic 1H-

MRI lung cavity segmentation, achieving a mean DSC of

0.94 on a dataset of 268 scans.32 These studies employed a

limited range of image acquisition parameters with 1H-MRI

scans acquired using the same scanner and from a single cen-

ter. Our 3D UNet proposed here demonstrated improved

performance over previous research studies on a significantly

larger dataset containing scans from multiple centers with

varying sequences and readout parameters. Previous works in

the field of 1H-MRI lung segmentation have employed either

2D31 or 3D32 approaches; here, we directly compared differ-

ences in segmentation performance between 2D and 3D seg-

mentation networks.

Our analysis of external validation data from centers

2 and 3 indicated that all lung cavity segmentation methods

show significantly reduced performance on scans acquired at

expiration. This effect was less prevalent in segmentations

generated by the 3D UNet where no significant difference

between inflation levels was observed using the Average HD

metric. Differences in performance between inflation levels

may be due to the reduced contrast between the lung paren-

chyma and other tissues as air is expelled from the lungs and

the increased heterogeneity of signal within the parenchyma

caused by pathophysiological air trapping at expiration

observed in some patients. In addition, segmentations of

exhaled lungs have a smaller volume than those of inhaled

lungs; this can potentially bias quantitative results when using

voxel-based evaluation metrics.33

Accurate lung segmentation of 1H-MRI plays an impor-

tant role in the treatment planning, monitoring, and assess-

ment of patients with respiratory diseases as well as other

applications that require the delineation of the lung cavity

such as dynamic contrast-enhanced perfusion MRI.5 The

ability to rapidly produce lung cavity segmentations can

greatly reduce cumbersome manual editing, leading to a more

streamlined lung imaging workflow and thus higher clinical

throughput, increasing clinical translation.

Limitations

The ratios of MRI acquisitions present in the training set

leads to potential biases toward some MR sequences or acqui-

sitions; those with a larger number of scans may lead to

improved segmentation performance for these acquisitions by

the network. In particular, this study presented more acquisi-

tion 3 scans than any other acquisition in the training set,

potentially leading to the increased DSC values exhibited by

the 2D and 3D UNets for this acquisition. However, using

the Average HD metric, no relationship between the number

of scans in the training set and reduced segmentation perfor-

mance can be established, indicating that these biases are

minimal. This is further reinforced by the superior perfor-

mance on external validation datasets demonstrated by the

3D UNet, despite the CNN never being exposed to 1H-MRI

scans from these centers or vendors during training. However,

external validation data contained only one pulmonary

pathology, namely, patients previously hospitalized with

COVID-19.

The expert segmentations used in this work delineate

only the lung parenchyma inclusive of vessels and no other

relevant structures, such as the airways. Various applications

require the delineation of only the lung parenchyma, includ-

ing the computation of clinically relevant metrics such as the

ventilation defect percentage15 and as a precursor step to

image registration of multi-inflation proton MRI for the gen-

eration of 1H-MRI surrogates of ventilation.34 However, in

certain respiratory disorders such as obstructive sleep apnea,

the segmentation of the airways is highly relevant for studying

the anatomical structure of the upper airways.35 Future inves-

tigations may aim to integrate a multi-label DL solution,

which can segment both the lung parenchyma and airways

simultaneously.

The number of MRI sequences contained within the

dataset were limited. The dataset contained SPGR and UTE

sequence scans i.e. proton density or T1-weighted scans only.

In addition, UTE scans were acquired with a kooshball acqui-

sition and, therefore, other possible acquisitions, such as

Floret and spiral, were not assessed. Likewise, only 3D acqui-

sition sequences were contained in the dataset, thereby limit-

ing its implementation to 3D sequences. The inclusion of

other MRI sequences, such as steady-state free-precession or

fast spin echo sequences, in combination with 2D and 3D

MRI sequences will help to further generalize the work. In

future investigations, we will aim to further validate the

model with data from an increased number of centers and

from MRI sequences not previously investigated.

In this work, 1H-MRI lung segmentations were primar-

ily evaluated using voxel-wise evaluation metrics, such as the

DSC. These metrics are susceptible to reduced sensitivity in

segmentation evaluation as the volume of the segmentation is

increased.36 Hence, comparisons between lung inflation levels

evaluated using voxel-based metrics are challenging. In future

work, transfer learning could be employed to boost the per-

formance on expiratory scans or more advanced data augmen-

tation methods could be used to increase the number of

expiratory scans in the training set. Similarly, comparisons

between acquisitions were limited in this study because of

variations in voxel resolution, resulting in large differences in

the overall number of voxels between acquisitions. While the

volume of the lung cavity remained largely consistent between

13
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acquisitions, the number of voxels did not; therefore, biases

were introduced when using voxel-based evaluation metrics.

The subject of appropriate evaluation metrics remains lively

within the medical image analysis field with recent works

aiming to quantify the benefits and drawbacks of each met-

ric.33 With this in mind, in this work, we employed a range

of evaluation metrics; the overlap-based DSC,26 the distance-

based Average HD,27 and the error-based XOR metric,28

which each assessed a different component of segmentation

accuracy. In addition, analysis of the lung cavity volume was

also undertaken when evaluating external validation data as a

non-voxel-based evaluation metric to further diversify seg-

mentation performance evaluation.

Conclusion

The DL-based implementable 1H-MRI segmentation net-

work produced accurate lung segmentations across a range of

pathologies, acquisitions, vendors, and centers, which could

potentially have numerous applications for pulmonary MRI

quantification. A 3D CNN significantly outperformed its 2D

analog and a conventional segmentation method.
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