84 research outputs found

    Current knowledge of external sulfate attack

    Get PDF
    This paper offers an update of the current understanding of sulfate attack, with emphasis on the sulfates present in an external water source percolating through, and potentially reacting with, the cement matrix. The paper considers the explanations put forward to explain sulfate attack, both from a chemical and microstructural perspective. Similarly, this paper reviews work on the physical damage caused by the precipitation of sulfate salts in porous materials. With the increased use of binary and ternary blends, this paper also considers the impact of binder composition on sulfate resistance, and similarly reviews how the nature of the sulfate species can affect the nature and extent of any deterioration. This then leads on to the important consideration of differences between field- and lab-based studies; reviewing the effect of various experimental parameters on sulfate resistance. This latter topic is of great importance to anyone who wishes to carry out such experiments

    Hair Trace Element and Electrolyte Content in Women with Natural and In Vitro Fertilization-Induced Pregnancy

    Get PDF
    The objective of the present study was to perform comparative analysis of hair trace element content in women with natural and in vitro fertilization (IVF)-induced pregnancy. Hair trace element content in 33 women with IVF-induced pregnancy and 99 age- and body mass index-matched control pregnant women (natural pregnancy) was assessed using inductively coupled plasma mass spectrometry. The results demonstrated that IVF-pregnant women are characterized by significantly lower hair levels of Cu, Fe, Si, Zn, Ca, Mg, and Ba at p < 0.05 or lower. Comparison of the individual levels with the national reference values demonstrated higher incidence of Fe and Cu deficiency in IVF-pregnant women in comparison to that of the controls. IVF pregnancy was also associated with higher hair As levels (p < 0.05). Multiple regression analysis revealed a significant interrelation between IVF pregnancy and hair Cu, Fe, Si, and As content. Hair Cu levels were also influenced by vitamin/mineral supplementation and the number of pregnancies, whereas hair Zn content was dependent on prepregnancy anthropometric parameters. In turn, planning of pregnancy had a significant impact on Mg levels in scalp hair. Generally, the obtained data demonstrate an elevated risk of copper, iron, zinc, calcium, and magnesium deficiency and arsenic overload in women with IVF-induced pregnancy. The obtained data indicate the necessity of regular monitoring of micronutrient status in IVF-pregnant women in order to prevent potential deleterious effects of altered mineral homeostasis
    corecore