

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration

Citation for published version:

Myers, RJ, Geng, G, Li, J, Rodriguez, ED, da Rosa, P, Kirchheim, AP & Monteiro, PJM 2017, 'Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration' Cement and Concrete Research, vol. 100, pp. 176-185. DOI: 10.1016/j.cemconres.2017.06.008

Digital Object Identifier (DOI):

10.1016/j.cemconres.2017.06.008

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Cement and Concrete Research

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Supporting information for:

Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration

Rupert J. Myers ^{1,2,*}, Guoqing Geng ^{1,a}, Erich D. Rodriguez ^{3,4,b}, Priscila da Rosa ^{3,c}, Ana Paula Kirchheim ^{3,d}, Paulo J. M. Monteiro ^{1,e}

¹ Department of Civil and Environmental Engineering, University of California, Berkeley, California, United States

² Yale School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, United States

³ Department of Civil Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil

⁴ Department of Civil Engineering, IMED, Passo Fundo, RS, Brazil

* Corresponding author. Email: rupert.myers@gmail.com, ^a guoqinggeng1989@gmail.com, ^b erich.rodriguez@imed.edu.br, ^c priscila.rosa@ufrgs.br, ^d anapaula.k@ufrgs.br, ^e monteiro@berkeley.edu.

Appendix A

X-ray fluorescence

X-ray fluorescence (XRF) measurements were performed on a Philips PW2400 Wavelength-Dispersive XRF machine. The estimated absolute error per $Na_{2x}Ca_{3-x}Al_2O_6$ unit is $\leq \pm 0.09$ mol Ca, $\leq \pm 0.01$ mol Na and $\leq \pm 0.02$ mol Al.

X-ray diffraction

X-ray diffractograms measured for the solid precursors used here are shown in Figure A1.

Figure A1. X-ray diffractograms of (A) cub-C₃A_1, (B) cub-C₃A_2, (C) orth-C₃A_2, (D) gypsum_1, and (E) gypsum_2. C = cubic C₃A (PDF# 01-070-0839), O = orth-C₃A (PDF# 01-070-0859), K = katoite (PDF# 00-024-0217), P = portlandite (PDF# 01-072-0156), G = gypsum (PDF# 01-070-0982) and h = hemihydrate (PDF# 01-081-1848).

Thermogravimetric analysis

The results from thermogravimetric analysis (TGA) of the precursor solids, performed on a Hitachi STA7300 operated at a heating rate of 20°C/minute up to 1000°C under an $N_{2 (g)}$ atmosphere, are shown in Figure A2.

Figure A2. TGA of (A) cub-C₃A_1, (B) cub-C₃A_2, (C) orth-C₃A_2, (D) gypsum_1, and (E) gypsum_2. The labels [†] and [‡] indicate that the Al(OH)₃ is amorphous by conventional XRD and mass loss from water in poorly crystalline calcium aluminate hydrates, respectively. Minute is abbreviated as min.

Particle size distribution

Particle size distributions for the solid precursors used here are shown in Figure A3.

Figure A3. Particle size distributions of (A) cub-C₃A_1, (B) cub-C₃A_2, (C) orth-C₃A_2, (D) gypsum_1, and (E) gypsum_2.

Appendix B

TGA results for orth- and cub-C₃A systems hydrated in water for 4 minutes are shown in Figure B1.

Figure B1. TGA results of (A) orth-C₃A_2 and (B) cub-C₃A_1 hydrated in water for 4 minutes, and (C) orth-C3A_2 and gypsum_2 hydrated in water for 8 minutes. The labels [†], [‡] and ^{*} indicate that the Al(OH)₃ is amorphous by conventional XRD, mass loss from water in poorly crystalline calcium aluminate hydrates, and C₄AC̄H₁₁, respectively. Mass loss from a small amount of C₄AC̄H₁₁ may also be present in (C). Minute is abbreviated as min.

Appendix C

Thermodynamic properties of the aqueous complexes and solid phases used in GEM-Selektor v.3 software to calculate SI^{eff} and K_{s0} values are shown in Tables C1-C3.

Table C1: Standard partial molal thermodynamic properties of the aqueous complexes used in the thermodynamic modelling calculations. The reference state is unit activity in a hypothetical one molal solution referenced to infinite dilution.

Species	V° (cm³/mol)	$\Delta_{\rm f} {\rm H}^{\circ}$ (kJ/mol)	$\Delta_{\rm f} {\rm G}^{\circ}$ (kJ/mol)	S° (J/mol.K)	Cp° (J/mol.K)	Reference
$AlSO_4^+$	-6.0	-1422.7	-1250.4	-172.4	-204.0	[1]
AlSO ₄ ²⁻	31.1	-2338.4	-2006.3	-135.5	-268.4	[1]
Al^{3+}	-45.2	-530.6	-483.7	-325.1	-128.7	[2]
$AlO^{+} (+ H_2O = Al(OH)_2^{+})$	0.3	-713.6	-660.4	-113.0	-125.1	[2]
$AlO_{2}^{-} (+ 2H_{2}O = Al(OH)_{4}^{-})$	9.5	-925.6	-827.5	-30.2	-49.0	[2]
$AlOOH^{o} (+ 2H_2O = Al(OH)_3^{o})$	13.0	-947.1	-864.3	20.9	-209.2	[2]
AlOH ²⁺	-2.7	-767.3	-692.6	-184.9	56.0	[2]
$\mathrm{CaSO_4^0}$	4.7	-1448.4	-1310.4	20.9	-104.6	[1,3]
Ca ²⁺	-18.4	-543.1	-552.8	-56.5	-30.9	[2]
$CaOH^+$	5.8	-751.6	-717.0	28.0	6.0	[2]
$NaSO_4^-$	18.6	-1146.7	-1010.3	101.8	-30.1	[1]
Na ⁺	-1.2	-240.3	-261.9	58.4	38.1	[2]
$NaOH^0$	3.5	-470.1	-418.1	44.8	-13.4	[2]
${ m H_2}^0$	25.3	-4.0	17.7	57.7	166.9	[4]
${f N_2}^0$	33.4	-10.4	18.2	95.8	234.2	[4]
${\mathbf O_2}^0$	30.5	-12.2	16.4	109.0	234.1	[4]
$S_2O_3^{2-}$	27.6	-649.9	-520.0	66.9	-238.5	[2]
HSO ₃ -	33.0	-627.7	-529.1	139.7	-5.4	[2]
\mathbf{SO}_3^{2-}	-4.1	-636.9	-487.9	-29.3	-281.0	[2]
HSO4 ⁻	34.8	-889.2	-755.8	125.5	22.7	[2]
SO4 ²⁻	12.9	-909.7	-744.5	18.8	-266.1	[2]
H_2S^0	35.0	-39.0	-27.9	125.5	179.2	[4]
HS⁻	20.2	-16.2	12.0	68.2	-93.9	[2]
S ²⁻	0	-16.2	120.4	-295.6	-93.9	[1]
OH	-4.7	-230.0	-157.3	-10.7	-136.3	[2]
H^+	0	0	0	0	0	[2]
H_2O^0	18.1	-285.9	-237.2	69.9	75.4	[5]

Phase	V°	$\Delta_{\mathbf{f}}\mathbf{H}^{\circ}$	$\Delta_{\mathbf{f}}\mathbf{G}^{\circ}$	S°	Cp°	Reference
	(cm ³ /mol)	(kJ/mol)	(kJ/mol)	(J/mol.K)	(J/mol.K)	
Cub-C ₃ A	89.2	-3560.6	-3382.3	205.4	209.4	[6-8]
Gypsum	74.7	-2023.4	-1797.8	193.8	186.2	[1,9]
Hemihydrate	61.7	-1575.3	-1436.3	134.3	124.1	[10]
C_4AH_{19}	370.1	-10018	-8749.9	1120	1382	[11]
$C_2AH_{7.5}$	179.7	-5277.5	-4695.5	450	535.9	[11]
Katoite	149.7	-5537.3	-5008.2	421.7	445.6	[11]
$C_4A\overline{S}H_{12}$	309.0	-8750	-7778.5	821.0	942.4	[7,12]
Ettringite	707.0	-17535	-15206	1900	2174.4	[7,12]
Portlandite	33.1	-984.7	-897.0	83.4	87.5	[1,9]
¹ / ₂ AH ₃ (microcrystalline)	32.0	-1265.3	-1148.4	140.0	93.1	[11]

Table C2: Standard partial molar thermodynamic properties of the solid phases used in the thermodynamic modelling calculations. The reference state is 298.15 K and 1 bar.

Table C3: Reactions and K_{s0} values of the solid phases used in the thermodynamic modelling calculations.

Phase	Reaction	log ₁₀ (K _{s0})	Reference
Cub-C ₃ A	$Ca_3Al_2O_6 + 2H_2O \iff 3Ca^{2+} + 2AlO_2^- + 4OH^-$	15.01*	[6-8]
Gypsum	$CaSO_4 \cdot 2H_2O \longleftrightarrow Ca^{2+} + SO_4^{2-} + 2H_2O$	-4.581	[1,9]
Hemihydrate	$CaSO_4 \cdot 0.5H_2O \longleftrightarrow Ca^{2+} + SO_4^{2-} + 0.5H_2O$	-3.59	[10]
C ₄ AH ₁₉	$Ca_{4}Al_{2}(OH)_{14} \cdot 12H_{2}O 4Ca^{2+} + 2AlO_{2}^{-} + 6OH^{-} + 16H_{2}O$	-25.45	[11]
C ₂ AH _{7.5}	$Ca_{2}Al_{2}(OH)_{10} \cdot 2.5H_{2}O 2Ca^{2+} + 2AlO_{2}^{-} + 2OH^{-} + 2H_{2}O$	-13.80	[11]
Katoite	$Ca_{3}Al_{2}(OH)_{12} \xleftarrow{3} 3Ca^{2+} + 2AlO_{2}^{-} + 4OH^{-} + 2H_{2}O$	-20.50	[11]
$C_4 A \overline{S} H_{12}$	$Ca_{4}Al_{2}(SO_{4})(OH)_{12} \cdot 6H_{2}O 4Ca^{2+} + 2AlO_{2}^{-} + SO_{4}^{2-} + 4OH^{-} + 10H_{2}O$	-29.26	[7,12]
Ettringite	$Ca_{6}Al_{2}(SO_{4})_{3}(OH)_{12} \cdot 26H_{2}O 6Ca^{2+} + 2AlO_{2}^{-} + 3SO_{4}^{2-} + 4OH^{-} + 30H_{2}O$	-44.9	[7,12]
Portlandite	$Ca(OH)_2 \longrightarrow Ca^{2+} + 2OH^{-}$	-5.20	[1,9]
¹ / ₂ AH ₃ (microcrystalline)	$Al(OH)_3 + OH^- \longrightarrow AlO_2^- + 2H_2O$	-0.67	[11]

* The K_{s0} value for cub-C₃A was calculated here using the referenced data.

References in this Electronic Supporting Information file

[1] W. Hummel, U. Berner, E. Curti, F.J. Pearson, T. Thoenen, Nagra/PSI chemical thermodynamic database 01/01, Universal Publishers, Parkland, Florida, 2002.

[2] E.L. Shock, D.C. Sassani, M. Willis, D.A. Sverjensky, Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim Cosmochim Acta, 61 (1997) 907-950.

[3] D.A. Sverjensky, E.L. Shock, H.C. Helgeson, Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb, Geochim Cosmochim Acta, 61 (1997) 1359-1412.

[4] E.L. Shock, H.C. Helgeson, D.A. Sverjensky, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species, Geochim Cosmochim Acta, 53 (1989) 2157-2183.

[5] J.W. Johnson, E.H. Oelkers, H.C. Helgeson, SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C, Comput Geosci, 18 (1992) 899-947.

[6] B. Lothenbach, T. Matschei, G. Möschner, F.P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cem Concr Res, 38 (2008) 1-18.

[7] T. Matschei, B. Lothenbach, F.P. Glasser, Thermodynamic properties of Portland cement hydrates in the system CaO-Al₂O₃-SiO₂-CaSO₄-CaCO₃-H₂O, Cem Concr Res, 37 (2007) 1379-1410.

[8] I. Babushkin, G.M. Matveev, O.P. Mchedlow-Petrossyan, Thermodynamics of silicates, Springer-Verlag, Berlin, 1985.

[9] T. Thoenen, D.A. Kulik, Nagra/PSI chemical thermodynamic database 01/01 for the GEM-Selektor (V.2-PSI) geochemical modeling code, Paul Scherrer Institute, Villigen, 2003. [10] D. Garvin;, V.B. Parker;, H. J. White Jr., CODATA thermodynamic tables selections for some compounds of calcium and related mixtures: a prototype set of tables, in, Hemisphere Pub. Corp., Washington, 1987.

[11] B. Lothenbach, L. Pelletier-Chaignat, F. Winnefeld, Stability in the system CaO–Al₂O₃–H₂O, Cem Concr Res, 42 (2012) 1621-1634.

[12] B. Lothenbach, F. Winnefeld, Thermodynamic modelling of the hydration of Portland cement, Cem Concr Res, 36 (2006) 209-226.