1,047 research outputs found

    Fundamental bounds on transmission through periodically perforated metal screens with experimental validation

    Full text link
    This paper presents a study of transmission through arrays of periodic sub-wavelength apertures. Fundamental limitations for this phenomenon are formulated as a sum rule, relating the transmission coefficient over a bandwidth to the static polarizability. The sum rule is rigorously derived for arbitrary periodic apertures in thin screens. By this sum rule we establish a physical bound on the transmission bandwidth which is verified numerically for a number of aperture array designs. We utilize the sum rule to design and optimize sub-wavelength frequency selective surfaces with a bandwidth close to the physically attainable. Finally, we verify the sum rule and simulations by measurements of an array of horseshoe-shaped slots milled in aluminum foil.Comment: 10 pages, 11 figures. Updated Introduction and Conclusion

    Can ICU admission be predicted?

    Get PDF
    After intensive care (IC), patients report poor health-related quality of life (HRQoL). Many factors affect the patients and influence the HRQoL after discharge. One of these factors is the patient's health status before the critical care period. In a previous study we found that the IC patients have a high frequency of pre-existing diseases. However, it is unknown to what extent these pre-existing diseases affect the consumption of hospital resources (measured as days as inpatients) in the time period before admission to the ICU and during the years following it. The consumption prior to the ICU event may also be claimed to herald an increased risk for a later ICU admittance? The aim of this study was to examine the hospital care consumption of former ICU patients 3 years prior to and 3 years after the intensive care period. This was examined in relation to the pre-existing health status

    The morality of attitudes toward nanotechnology: about God, techno-scientific progress, and interfering with nature

    Get PDF
    Using survey data, we examine public attitudes toward and awareness of nanotechnology in Germany (N = 750). First, it is shown that a majority of the people are still not familiar with nanotechnology. In addition, diffusion of information about nanotechnology thus far mostly seems to reach men and people with a relative higher educational background. Also, pro-science and technology views are positively related with nanotech familiarity. Results further show that a majority of the people have an indifferent, ambiguous, or non-attitude toward nanotechnology. Multinomial logit analyses further reveal that nanotech familiarity is positively related with people’s attitudes. In addition, it is shown that traditional religiosity is unrelated to attitudes and that individual religiosity is weakly related to nanotechnology attitudes. However, moral covariates other than religiosity seem of major importance. In particular, our results show that more negative views on technological and scientific progress as well as more holistic views about the relation between people and the environment increase the likelihood of having a negative attitude toward nanotechnology

    Характеристика сили нервових процесів у плавців

    Get PDF
    OBJECTIVE: Higher levels of the novel inflammatory marker pentraxin 3 (PTX3) predict cardiovascular mortality in patients with chronic kidney disease (CKD). Yet, whether PTX3 predicts worsening of kidney function has been less well studied. We therefore investigated the associations between PTX3 levels, kidney disease measures and CKD incidence. METHODS: Cross-sectional associations between serum PTX3 levels, urinary albumin/creatinine ratio (ACR) and cystatin C-estimated glomerular filtration rate (GFR) were assessed in two independent community-based cohorts of elderly subjects: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, n = 768, 51% women, mean age 75 years) and the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 651, mean age 77 years). The longitudinal association between PTX3 level at baseline and incident CKD (GFR <60 mL( ) min(-1)  1.73 m(-) ²) was also analysed (number of events/number at risk: PIVUS 229/746, ULSAM 206/315). RESULTS: PTX3 levels were inversely associated with GFR [PIVUS: B-coefficient per 1 SD increase -0.16, 95% confidence interval (CI) -0.23 to -0.10, P < 0.001; ULSAM: B-coefficient per 1 SD increase -0.09, 95% CI -0.16 to -0.01, P < 0.05], but not ACR, after adjusting for age, gender, C-reactive protein and prevalent cardiovascular disease in cross-sectional analyses. In longitudinal analyses, PTX3 levels predicted incident CKD after 5 years in both cohorts [PIVUS: multivariable odds ratio (OR) 1.21, 95% CI 1.01-1.45, P < 0.05; ULSAM: multivariable OR 1.37, 95% CI 1.07-1.77, P < 0.05]. CONCLUSIONS: Higher PTX3 levels are associated with lower GFR and independently predict incident CKD in elderly men and women. Our data confirm and extend previous evidence suggesting that inflammatory processes are activated in the early stages of CKD and drive impairment of kidney function. Circulating PTX3 appears to be a promising biomarker of kidney disease

    A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars

    Full text link
    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σω\sigma - \omega mean field model for the nucleons and their interactions. In this context there are two notions of ``relativistic'': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly-rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR

    On local linearization of control systems

    Get PDF
    We consider the problem of topological linearization of smooth (C infinity or real analytic) control systems, i.e. of their local equivalence to a linear controllable system via point-wise transformations on the state and the control (static feedback transformations) that are topological but not necessarily differentiable. We prove that local topological linearization implies local smooth linearization, at generic points. At arbitrary points, it implies local conjugation to a linear system via a homeomorphism that induces a smooth diffeomorphism on the state variables, and, except at "strongly" singular points, this homeomorphism can be chosen to be a smooth mapping (the inverse map needs not be smooth). Deciding whether the same is true at "strongly" singular points is tantamount to solve an intriguing open question in differential topology
    corecore