296 research outputs found

    Landing together: how flocks arrive at a coherent action in time and space in the presence of perturbations

    Full text link
    Collective motion is abundant in nature, producing a vast amount of phenomena which have been studied in recent years, including the landing of flocks of birds. We investigate the collective decision making scenario where a flock of birds decides the optimal time of landing in the absence of a global leader. We introduce a simple phenomenological model in the spirit of the statistical mechanics-based self-propelled particles (SPP-s) approach to interpret this process. We expect that our model is applicable to a larger class of spatiotemporal decision making situations than just the landing of flocks (which process is used as a paradigmatic case). In the model birds are only influenced by observable variables, like position and velocity. Heterogeneity is introduced in the flock in terms of a depletion time after which a bird feels increasing bias to move towards the ground. Our model demonstrates a possible mechanism by which animals in a large group can arrive at an egalitarian decision about the time of switching from one activity to another in the absence of a leader. In particular, we show the existence of a paradoxical effect where noise enhances the coherence of the landing process.Comment: 15 pages, 7 figure

    Human and animal epidemic of Yersinia enterocolitica O:9, 1989-1997, Auvergne, France.

    Get PDF
    Yersinia enterocolitica O:9 infections were reported in Auvergne in 1988 to 1989, while brucellosis due to Brucella abortus was almost eliminated. The serologic cross-reactions between the two bacteria complicated the diagnosis of brucellosis cases. In 1996, human cases of Yersinia enterocolitica O:9 infection were detected, with a peak incidence of 12 cases. Veterinary surveillance could have predicted the emergence of this disease in humans

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    The Drosophila melanogaster Seminal Fluid Protease “Seminase” Regulates Proteolytic and Post-Mating Reproductive Processes

    Get PDF
    Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs). Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence) have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females

    Divergence in transcriptional and regulatory responses to mating in male and female fruitflies

    Get PDF
    Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness

    The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs

    Get PDF
    BACKGROUND: It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. METHODS/PRINCIPAL FINDINGS: We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). CONCLUSIONS: The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies

    Expression in Antennae and Reproductive Organs Suggests a Dual Role of an Odorant-Binding Protein in Two Sibling Helicoverpa Species

    Get PDF
    Odorant-binding proteins (OBPs) mediate both perception and release of semiochemicals in insects. These proteins are the ideal targets for understanding the olfactory code of insects as well as for interfering with their communication system in order to control pest species. The two sibling Lepidopteran species Helicoverpa armigera and H. assulta are two major agricultural pests. As part of our aim to characterize the OBP repertoire of these two species, here we focus our attention on a member of this family, OBP10, particularly interesting for its expression pattern. The protein is specifically expressed in the antennae of both sexes, being absent from other sensory organs. However, it is highly abundant in seminal fluid, is transferred to females during mating and is eventually found on the surface of fertilised eggs. Among the several different volatile compounds present in reproductive organs, OBP10 binds 1-dodecene, a compound reported as an insect repellent. These results have been verified in both H. armigera and H. assulta with no apparent differences between the two species. The recombinant OBP10 binds, besides 1-dodecene, some linear alcohols and several aromatic compounds. The structural similarity of OBP10 with OBP1 of the mosquito Culex quinquefasciatus, a protein reported to bind an oviposition pheromone, and its affinity with 1-dodecene suggest that OBP10 could be a carrier for oviposition deterrents, favouring spreading of the eggs in these species where cannibalism is active among larvae
    corecore