10 research outputs found

    ALMA Observations of a Gap and a Ring in the Protoplanetary Disk around TW Hya

    Get PDF
    We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ∌30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ∌15 au. In addition, the 13CO and C18O J=3-2 lines show a decrement in CO line emission throughout the disk, down to ∌10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2{M}{{Neptune}}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice

    Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations

    Get PDF
    Aims. We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae’s footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0−20°) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20−45°) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1 m to 10 m for the majority of them; and iii) high-slope terrains (45−90°) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3−15 Pa (upper limit of 150 Pa), 4−30 Pa for the shear strength of fine surface materials and boulders, and 30−150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities

    Dust Evolution and the Formation of Planetesimals

    No full text

    Formation of Terrestrial Planets

    No full text
    The past decade has seen major progress in our understanding of terrestrial planet formation. Yet key questions remain. In this review we first address the growth of 100 km-scale planetesimals as a consequence of dust coagulation and concentration, with current models favoring the streaming instability. Planetesimals grow into Mars-sized (or larger) planetary embryos by a combination of pebble- and planetesimal accretion. Models for the final assembly of the inner Solar System must match constraints related to the terrestrial planets and asteroids including their orbital and compositional distributions and inferred growth timescales. Two current models -- the Grand-Tack and low-mass (or empty) primordial asteroid belt scenarios -- can each match the empirical constraints but both have key uncertainties that require further study. We present formation models for close-in super-Earths -- the closest current analogs to our own terrestrial planets despite their very different formation histories -- and for terrestrial exoplanets in gas giant systems. We explain why super-Earth systems cannot form in-situ but rather may be the result of inward gas-driven migration followed by the disruption of compact resonant chains. The Solar System is unlikely to have harbored an early system of super-Earths; rather, Jupiter's early formation may have blocked the ice giants' inward migration. Finally, we present a chain of events that may explain why our Solar System looks different than more than 99\% of exoplanet systems

    Understanding planet formation using microgravity experiments

    No full text
    corecore