11 research outputs found

    Miniature inhibitory postsynaptic current in cerebellar Purkinje cells of old dystrophic mdx mice

    No full text
    Duchenne muscular dystrophy (DMD) is caused by the mutations in the X-linked dystrophin gene resulting in a deficiency in the protein dystrophin. About 1/3 of boys with DMD display some degree of cognitive impairments (Cotton et al., 2001). In the cerebellum, dystrophin is normally localized at the postsynaptic membrane of GABAergic synapses of Purkinje cells. Previously, we showed a significant reduction in both the frequency and amplitude of miniature inhibitory postsynaptic current (mIPSCs) in cerebellar Purkinje cells of adult (3-4 months old) mdx compared with littermate control (Kueh et al., 2011; Kueh et al., 2008). Here, we investigated the mIPSCs of young (3-4 months old) and old mdx mice (23-26 months old). These aging mice were chosen because earlier reports showed both muscle and brain degenerative progression in old mdx mice resembles those found in DMD patients (Pastoret & Sebille, 1995; Rae et al., 1998)

    Inhibitory effect of berberine on interleukin-2 secretion from PHA-treated lymphocytic Jurkat cells

    No full text
    [[abstract]]Berberine is an isoquinoline alkaloid isolated from herb plants, such as Cortex phellodendri (Huangbai) and Rhizoma coptidis (Huanglian). Huanglian and Huangbai have been used as “heat-removing” agents. In addition, berberine has been reported to exert anti-inflammatory effect both in vivo and in vitro, where mitogen-activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) expressions are critically implicated. We herein tested the hypothesis that berberine exerts an anti-inflammatory effect through MAPK and COX-2 signaling pathway in T-cell acute lymphoblastic leukemia (T-ALL). In Jurkat cells, we found that PHA exposure caused elevation on interleukin-2 (IL-2) production in a time-dependent manner. PHA-stimulated reactions were steeply suppressed by berberine, such as IL-2 mRNA expression and protein secretion. However, berberine did not exert any cytotoxic effect at doses of 40 μg/ml. In addition, the possible molecular mechanism of anti-inflammation effect of berberine could be the inhibition of PHA-evoked phosphorylation of p38, since c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) expressions did not alter. Consistent with above results, berberine inhibition on PHA-induced IL-2 secretion could be reversed by treatment of SB203580, a specific inhibitor of p38-MAPK. Interestingly, upregulation of PHA-induced COX-2 expression was also observed following berberine treatment of Jurkat cells. Furthermore, flow cytometry analysis showed berberine-induced cell cycle arrest at G1 phase after PHA stimulation and decreased percentage of G2/M phase. In conclusion, our study demonstrated that the anti-inflammatory effect of berberine largely potentially results from its ability to attenuate p38 MAPK expression, and does not exclude a positive action of berberine on cell cycle arrest. These results provide an innovative medicine strategy to against or treat T-ALL patients

    Rapalogs Efficacy Relies on the Modulation of Antitumor T-cell Immunity

    No full text
    International audienceThe rapalogs everolimus and temsirolimus that inhibit mTOR signaling are used as antiproliferative drugs in several cancers. Here we investigated the influence of rapalogs-mediated immune modulation on their antitumor efficacy. Studies in metastatic renal cell carcinoma patients showed that everolimus promoted high expansion of FoxP3 (+)Helios(+)Ki67(+) regulatory CD4 T cells (Tregs). In these patients, rapalogs strongly enhanced the suppressive functions of Tregs, mainly in a contact-dependent manner. Paradoxically, a concurrent activation of spontaneous tumor-specific Th1 immunity also occurred. Furthermore, a high rate of Eomes(+)CD8(+) T cells was detected in patients after a long-term mTOR inhibition. We found that early changes in the Tregs/antitumor Th1 balance can differentially shape the treatment efficacy. Patients presenting a shift toward decreased Tregs levels and high expansion of antitumor Th1 cells showed better clinical responses. Studies conducted in tumor-bearing mice confirmed the deleterious effect of rapalogs-induced Tregs via a mechanism involving the inhibition of antitumor T-cell immunity. Consequently, the combination of temsirolimus plus CCR4 antagonist, a receptor highly expressed on rapalogs-exposed Tregs, was more effective than monotherapy. Altogether, our results describe for the first time a dual impact of host adaptive antitumor T-cell immunity on the clinical effectiveness of rapalogs and prompt their association with immunotherapies. Cancer Res; 76(14); 4100-12. ©2016 AACR

    Multivalency transforms SARS-CoV-2 antibodies into broad and ultrapotent neutralizers

    No full text
    The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes Coronavirus Disease 2019 (COVID-19), has caused a global pandemic. Antibodies are powerful biotherapeutics to fight viral infections; however, discovery of the most potent and broadly acting clones can be lengthy. Here, we used the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 × 10−14 M were achieved as a result of up to 10,000-fold potency enhancements. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and Ig-like in vivo bioavailability. This MULTi-specific, multi-Affinity antiBODY (Multabody; or MB) platform contributes a new class of medical countermeasures against COVID-19 and an efficient approach to rapidly deploy potent and broadly-acting therapeutics against infectious diseases of global health importance.N
    corecore