123 research outputs found

    An expanded mammal mitogenome dataset from Southeast Asia

    Get PDF
    Southeast (SE) Asia is 1 of the most biodiverse regions in the world, and it holds approximately 20% of all mammal species. Despite this, the majority of SE Asia's genetic diversity is still poorly characterized. The growing interest in using environmental DNA to assess and monitor SE Asian species, in particular threatened mammals-has created the urgent need to expand the available reference database of mitochondrial barcode and complete mitogenome sequences. We have partially addressed this need by generating 72 new mitogenome sequences reconstructed from DNA isolated from a range of historical and modern tissue samples. Approximately 55 gigabases of raw sequence were generated. From this data, we assembled 72 complete mitogenome sequences, with an average depth of coverage of ×102.9 and ×55.2 for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Our new database of 52 taxa will strongly enhance the utility of environmental DNA approaches for monitoring mammals in SE Asia as it greatly increases the likelihoods that identification of metabarcoding sequencing reads can be assigned to reference sequences. This magnifies the confidence in species detections and thus allows more robust surveys and monitoring programmes of SE Asia's threatened mammal biodiversity. The extensive collections of historical samples from SE Asia in western and SE Asian museums should serve as additional valuable material to further enrich this reference database

    Modern wolves trace their origin to a late Pleistocene expansion from Beringia

    No full text
    Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that maintained a wide geographic distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single late Pleistocene population. Both the geographic origin of this ancestral population and how it became widespread remain a mystery. Here we analyzed a large dataset of novel modern and ancient mitochondrial wolf genomes, spanning the last 50,000 years, using a spatially and temporally explicit modeling framework to show that contemporary wolf populations across the globe trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum - a process most likely driven by the significant ecological changes that occurred across the Northern Hemisphere during this period. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore and provides an insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog

    Killer whale genomes reveal a complex history of recurrent admixture and vicariance

    Get PDF
    Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree‐like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non‐Antarctic lineages is further driven by ancestry segments with up to fourfold older coalescence time than the genome‐wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome‐wide data to sample the variation in ancestry within individuals

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe

    Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review

    Get PDF
    Background The prognosis, specifically the case fatality and duration, of untreated tuberculosis is important as many patients are not correctly diagnosed and therefore receive inadequate or no treatment. Furthermore, duration and case fatality of tuberculosis are key parameters in interpreting epidemiological data. Methodology and Principal Findings To estimate the duration and case fatality of untreated pulmonary tuberculosis in HIV negative patients we reviewed studies from the pre-chemotherapy era. Untreated smear-positive tuberculosis among HIV negative individuals has a 10-year case fatality variously reported between 53% and 86%, with a weighted mean of 70%. Ten-year case fatality of culture-positive smear-negative tuberculosis was nowhere reported directly but can be indirectly estimated to be approximately 20%. The duration of tuberculosis from onset to cure or death is approximately 3 years and appears to be similar for smear-positive and smear-negative tuberculosis. Conclusions Current models of untreated tuberculosis that assume a total duration of 2 years until self-cure or death underestimate the duration of disease by about one year, but their case fatality estimates of 70% for smear-positive and 20% for culture-positive smear-negative tuberculosis appear to be satisfactory

    Grey wolf genomic history reveals a dual ancestry of dogs

    Get PDF
    The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canisfamiliaris) lived(1-8). Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT8840,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.Peer reviewe
    • …
    corecore