53 research outputs found

    \ud Detection and Monitoring of Insecticide Resistance in Malaria Vectors in Tanzania Mainland\ud

    Get PDF
    \ud Vector control is a major component of the global strategy for malaria control which aims to prevent parasite transmission mainly through interventions targeting adult Anopheline vectors. Insecticide treated nets (ITNs) and indoor residual spraying (IRS) are the cornerstone of malaria vector control programmes. These major interventions in most cases use pyrethroid insecticides which are also used for agricultural purposes. With widespread development of resistance to pyrethroid insecticides in malaria vectors raises concern over the sustainability of insecticide-based interventions for malaria control. Therefore, close monitoring of performance of the insecticides against malaria vectors is essential for early detection and\ud management of resistance. To measure pyrethroid susceptibility in populations of malaria vectors in Tanzania and to test the efficacy of LLINs/ITNs and insecticide residues on sprayed wall substrates in the IRS operation areas. In 2011 the National Institute for Medical Research (NIMR) in collaboration with National Malaria Control Programme (NMCP) conducted large scale surveillance to determine the countrywide susceptibility levels of malaria vectors to insecticides used for both public health and agricultural purposes. Anopheles gambiae Giles s.l. were collected during national surveys and samples of LLINs/ITNs in the 14 sentinel sites and houses from the IRS areas were randomly selected for bioassays to test the efficacy and insecticide residual effects on sprayed wall substrates respectively. Wild adult mosquitoes for susceptibility testing were collected by resting catches indoors. Net traps (outdoors and indoors) were set up to enhance catches. WHO Susceptibility kits were used to test for resistance status using test papers: Lambdacyhalothrin 0.05%, Deltamethrin 0.05%, Permethrin 0.75%, DDT 4%, Propoxur 0.1% and Fenitrothion 1%. The quality of the test paper was checked against a laboratory susceptible An. gambiae Kisumu strain. Knockdown effect and mortality were measured in standard WHO susceptibility tests and cone bio-efficacy tests. Whereas, con bioassays on treated walls and ITNs were conducted using the laboratory susceptible An. gambiae Kisumu strain. The results from the surveillance recorded continued susceptibility of malaria vectors to commonly used insecticides. However, there were some isolated cases of resistance and/or reduced susceptibility to pyrethroid insecticides which may not compromise the current vector control interventions in the country. Anopheles gambiae s.l. showed resistance (15-28%) to each of the pyrethroids and to DDT but not to Organophosphates (Propoxur 0.1%), and Carbamates (Fenitrothion 1%). The information obtained from this surveillance is expected to be used to guide the National Malaria Control Programme on the rational selection of insecticides for malaria vector control and for the national mitigation plans for management and containment of malaria vector resistance in the country. The current observation warrants more vigilant monitoring of the susceptibility of malaria mosquitoes to commonly used insecticides in areas found with resistance and/or reduced levels of susceptibility of malaria vectors to insecticides, particularly in areas with heavy agricultural and/or public health use of insecticides where resistance is likely to develop. The current survey covered malaria vectors only and not the non malaria vectors (nuisance) mosquitoes such as Culex. Similar monitoring of insecticide susceptibility of this non malaria vectors may be needed to ensure public motivation for sustained use of ITNs/LLINs in the country. The surveillance leading to these results received funding from PMI/USAID through RTI International with Sub Agreement Number 33300212555.\u

    A Spatial Analysis of Rift Valley Fever Virus Seropositivity in Domestic Ruminants in Tanzania

    Get PDF
    Rift Valley fever (RVF) is an acute arthropod-borne viral zoonotic disease primarily occurring in Africa. Since RVF-like disease was reported in Tanzania in 1930, outbreaks of the disease have been reported mainly from the eastern ecosystem of the Great Rift Valley. This cross-sectional study was carried out to describe the variation in RVF virus (RVFV) seropositivity in domestic ruminants between selected villages in the eastern and western Rift Valley ecosystems in Tanzania, and identify potential risk factors. Three study villages were purposively selected from each of the two Rift Valley ecosystems. Serum samples from randomly selected domestic ruminants (n = 1,435) were tested for the presence of specific immunoglobulin G (IgG) and M (IgM), using RVF enzyme-linked immunosorbent assay methods. Mixed effects logistic regression modelling was used to investigate the association between potential risk factors and RVFV seropositivity. The overall RVFV seroprevalence (n = 1,435) in domestic ruminants was 25.8% and species specific seroprevalence was 29.7%, 27.7% and 22.0% in sheep (n = 148), cattle (n = 756) and goats (n = 531), respectively. The odds of seropositivity were significantly higher in animals sampled from the villages in the eastern than those in the western Rift Valley ecosystem (OR = 1.88, CI: 1.41, 2.51; p<0.001), in animals sampled from villages with soils of good than those with soils of poor water holding capacity (OR = 1.97; 95% CI: 1.58, 3.02; p< 0.001), and in animals which had been introduced than in animals born within the herd (OR = 5.08, CI: 2.74, 9.44; p< 0.001). Compared with animals aged 1-2 years, those aged 3 and 4-5 years had 3.40 (CI: 2.49, 4.64; p< 0.001) and 3.31 (CI: 2.27, 4.82, p< 0.001) times the odds of seropositivity. The findings confirm exposure to RVFV in all the study villages, but with a higher prevalence in the study villages from the eastern Rift Valley ecosystem

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Spatial and Temporal Pattern of Rift Valley Fever Outbreaks in Tanzania; 1930 to 2007

    Get PDF
    Rift Valley fever (RVF)-like disease was first reported in Tanzania more than eight decades ago and the last large outbreak of the disease occurred in 2006–07. This study investigates the spatial and temporal pattern of RVF outbreaks in Tanzania over the past 80 years in order to guide prevention and control strategies. A retrospective study was carried out based on disease reporting data from Tanzania at district or village level. The data were sourced from the Ministries responsible for livestock and human health, Tanzania Meteorological Agency and research institutions involved in RVF surveillance and diagnosis. The spatial distribution of outbreaks was mapped using ArcGIS 10. The space-time permutation model was applied to identify clusters of cases, and a multivariable logistic regression model was used to identify risk factors associated with the occurrence of outbreaks in the district. RVF outbreaks were reported between December and June in 1930, 1947, 1957, 1960, 1963, 1968, 1977– 79, 1989, 1997–98 and 2006–07 in 39.2% of the districts in Tanzania. There was statistically significant spatio-temporal clustering of outbreaks. RVF occurrence was associated with the eastern Rift Valley ecosystem (OR = 6.14, CI: 1.96, 19.28), total amount of rainfall of .405.4 mm (OR = 12.36, CI: 3.06, 49.88), soil texture (clay [OR = 8.76, CI: 2.52, 30.50], and loam [OR = 8.79, CI: 2.04, 37.82]). RVF outbreaks were found to be distributed heterogeneously and transmission dynamics appeared to vary between areas. The sequence of outbreak waves, continuously cover more parts of the country. Whenever infection has been introduced into an area, it is likely to be involved in future outbreaks. The cases were more likely to be reported from the eastern Rift Valley than from the western Rift Valley ecosystem and from areas with clay and loam rather than sandy soil texture

    Quantifying the burden of rhodesiense sleeping sickness in Urambo district, Tanzania

    Get PDF
    Sleeping sickness (human African trypanosomiasis - HAT) is a disease transmitted by tsetse flies and is always fatal if left untreated. The disease occurs in foci affecting poor communities with limited access to health service provision and as such the disease is often left undiagnosed, mistaken for more common afflictions. Even if diagnosed, sleeping sickness is costly to treat, both for health services and patients and their families in terms of costs of diagnosis, transport, hospital care, and the prolonged period of convalescence. Here we estimate the health burden of the acute form T. b. rhodesiense sleeping sickness in Urambo District, Tanzania in terms of Disability Adjusted Life Years (DALYs), the yardstick commonly used by policy makers to prioritize disease management practices, representing a year of healthy life lost to disease. In this single district, the burden of the disease over one year was estimated at 979 DALYs and the estimated monetary costs to health services for the 143 treated patients at US11,841andtothepatientsthemselvesatUS 11,841 and to the patients themselves at US 3,673 for direct medical costs and US$ 9,781 for indirect non-medical costs. Sleeping sickness thus places a considerable burden on the affected rural communities and health services

    Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach

    Get PDF
    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006–2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data

    Socio-Ecological Systems Analysis and Health System Readiness in Responding to Dengue Epidemics in Ilala and Kinondoni Districts, Tanzania

    Get PDF
    IntroductionSince 2010, Tanzania has been experiencing frequent outbreaks of dengue. The objectives of this study were to carry out a socio-ecological systems (SES) analysis to identify risk factors and interventions and assess the readiness of the district in the prevention and control of dengue.MethodsThe study utilized a cross-sectional purposive selection of key stakeholders responsible for disease surveillance and response in human and animal sectors in Ilala and Kinondoni districts in Tanzania. A SES framework was used to identify drivers and construct perceived thematic causal explanations of the dengue outbreaks in the study districts. A mapping exercise was carried out to analyse the performance of the disease surveillance system at district and facility levels. A semi-structured questionnaire was used to assess the districts’ readiness in the response to dengue outbreak.ResultsThe two districts were characterized by both urban and peri-urban ecosystems, with a mixture of planned and unplanned settlements which support breeding and proliferation of Aedes mosquitoes. The results indicate inadequate levels of readiness in the management and control of dengue outbreaks, in terms of clinical competence, diagnostic capacities, surveillance system and control/prevention measures. Mosquito breeding sites, especially discarded automobile tyres, were reported to be scattered in the districts. Constraining factors in implementing disease surveillance included both intrapersonal and interpersonal factors, lack of case management guidelines, difficult language used in standard case definitions, inadequate laboratory capacity, lack of appropriate rapid response teams, inadequate knowledge on outbreak investigation and inadequate capacities in data management.ConclusionThe two districts had limited readiness in the management and control of dengue, in terms of clinical competence, diagnostic capacities, surveillance system and prevention and control measures. These challenges require the immediate attention by the authorities, as they compromise the effectiveness of the national strategy for community health support.</jats:sec

    Seroprevalence and associated risk factors of chikungunya, dengue, and Zika in eight districts in Tanzania

    Get PDF
    Background: This study was conducted to determine the seroprevalence and risk factors of chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses in Tanzania. Methods: The study covered the districts of Buhigwe, Kalambo, Kilindi, Kinondoni, Kondoa, Kyela, Mvomero, and Ukerewe in Tanzania. Blood samples were collected from individuals recruited from households and healthcare facilities. An ELISA was used to screen for immunoglobulin G antibodies against CHIKV, DENV, and ZIKV. Results: A total of 1818 participants (median age 34 years) were recruited. The overall CHIKV, DENV, and ZIKV seroprevalence rates were 28.0%, 16.1%, and 6.8%, respectively. CHIKV prevalence was highest in Buhigwe (46.8%), DENV in Kinondoni (43.8%), and ZIKV in Ukerewe (10.6%) and Mvomero (10.6%). Increasing age and frequent mosquito bites were significantly associated with CHIKV and DENV seropositivity (P < 0.05). Having piped water or the presence of stagnant water around the home (P < 0.01) were associated with higher odds of DENV seropositivity. Fever was significantly associated with increased odds of CHIKV seropositivity (P < 0.001). Visiting mines had higher odds of ZIKV seropositivity (P < 0.05). Conclusions: These findings indicate that DENV, CHIKV, and ZIKV are circulating in diverse ecological zones of Tanzania. There is a need to strengthen the control of mosquito-borne viral diseases in Tanzania

    Exploring local knowledge and perceptions on zoonoses among pastoralists in northern and eastern Tanzania

    Get PDF
    Background: Zoonoses account for the most commonly reported emerging and re-emerging infectious diseases in Sub-Saharan Africa. However, there is limited knowledge on how pastoral communities perceive zoonoses in relation to their livelihoods, culture and their wider ecology. This study was carried out to explore local knowledge and perceptions on zoonoses among pastoralists in Tanzania. Methodology and principal findings: This study involved pastoralists in Ngorongoro district in northern Tanzania and Kibaha and Bagamoyo districts in eastern Tanzania. Qualitative methods of focus group discussions, participatory epidemiology and interviews were used. A total of 223 people were involved in the study. Among the pastoralists, there was no specific term in their local language that describes zoonosis. Pastoralists from northern Tanzania possessed a higher understanding on the existence of a number of zoonoses than their eastern districts' counterparts. Understanding of zoonoses could be categorized into two broad groups: a local syndromic framework, whereby specific symptoms of a particular illness in humans concurred with symptoms in animals, and the biomedical framework, where a case definition is supported by diagnostic tests. Some pastoralists understand the possibility of some infections that could cross over to humans from animals but harm from these are generally tolerated and are not considered as threats. A number of social and cultural practices aimed at maintaining specific cultural functions including social cohesion and rites of passage involve animal products, which present zoonotic risk. Conclusions: These findings show how zoonoses are locally understood, and how epidemiology and biomedicine are shaping pastoralists perceptions to zoonoses. Evidence is needed to understand better the true burden and impact of zoonoses in these communities. More studies are needed that seek to clarify the common understanding of zoonoses that could be used to guide effective and locally relevant interventions. Such studies should consider in their approaches the pastoralists' wider social, cultural and economic set up
    • …
    corecore