15 research outputs found

    The High-Rise Resolution Carbon Geography of Peru

    Get PDF
    Vegetation is one of the most spatially and temporally dynamic reservoirs of carbon in the world. The amount of carbon stored in vegetation above ground in woody biomass is particularly variable, and is subject to rapid change via land uses that remove vegetation cover, causing carbon emissions. Reducing carbon emissions from deforestation and forest degradation, as well as from other non-forested ecosystems, is therefore a priority in both national and international strategies to conserve ecosystems and to reduce carbon dioxide build-up in the atmosphere.Perú harbors an enormous range of ecological conditions, from hot and humid lowland Amazonian forests to high-altitude Andean ecosystems and desert conditions on the Pacific coast. The diversity of environments in Perú greatly challenges efforts to measure, map and monitor carbon stocks throughout the country.We report the first high-resolution geographic study of aboveground carbon stocks throughout the more than 128 million hectares that comprise the country of Perú. This report communicates the development of our methodology and an extensive validation of the resulting high-resolution carbon map of Perú. It also provides the first quantitative analysis of the basic environmental factors determining the carbon geography of Peruvian ecosystems, political regions, and protected areas

    Plantas vasculares endémicas de Arequipa - Perú

    Get PDF
    La ciencia es un proceso. Por lo general, las actividades científicas se clasifican en ciencia aplicada o ciencia cuyo objetivo conduce al logro de un producto con utilidad, y alternativamente, ciencia pura o ciencia por el bien de la ciencia, donde se obtienen datos para construir nuestro conocimiento general acerca del planeta. Esta publicación representa una combinación de resultados valiosos; tanto, para la ciencia aplicada, como para la ciencia básicaEste trabajo fue financiado por el Fondo Concursable: IBA-0037-201

    Convergence in the temperature response of leaf respiration across biomes and plant functional types

    Get PDF
    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates

    Scale dependence of canopy trait distributions along a tropical forest elevation gradient

    No full text
    Average responses of forest foliar traits to elevation are well understood, but far less is known about trait distributional responses to elevation at multiple ecological scales. This limits our understanding of the ecological scales at which trait variation occurs in response to environmental drivers and change. We analyzed and compared multiple canopy foliar trait distributions using field sampling and airborne imaging spectroscopy along an Andes-to-Amazon elevation gradient. Field-estimated traits were generated from three community-weighting methods, and remotely sensed estimates of traits were made at three scales defined by sampling grain size and ecological extent. Field and remote sensing approaches revealed increases in average leaf mass per unit area (LMA), water, nonstructural carbohydrates (NSCs) and polyphenols with increasing elevation. Foliar nutrients and photosynthetic pigments displayed little to no elevation trend. Sample weighting approaches had little impact on field-estimated trait responses to elevation. Plot representativeness of trait distributions at landscape scales decreased with increasing elevation. Remote sensing indicated elevation-dependent increases in trait variance and distributional skew. Multiscale invariance of LMA, leaf water and NSC mark these traits as candidates for tracking forest responses to changing climate. Trait-based ecological studies can be greatly enhanced with multiscale studies made possible by imaging spectroscopy.Fil: Asner, Gregory P.. Carnegie Institution for Science. Department of Global Ecology; Estados UnidosFil: Martin, Roberta E.. Carnegie Institution for Science. Department of Global Ecology; Estados UnidosFil: Anderson, Christopher Brian. Carnegie Institution for Science. Department of Global Ecology; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kryston, Katherine. Carnegie Institution for Science. Department of Global Ecology; Estados UnidosFil: Vaughn, Nicholas. Carnegie Institution for Science. Department of Global Ecology; Estados UnidosFil: Knapp, David E.. Carnegie Institution for Science. Department of Global Ecology; Estados UnidosFil: Bentley, Lisa Patrick. University of Oxford; Reino UnidoFil: Shenkin, Alexander. University of Oxford; Reino UnidoFil: Salinas, Norma. University of Oxford; Reino Unido. Pontificia Universidad Católica de Perú; PerúFil: Sinca, Felipe. Carnegie Institution for Science. Department of Global Ecology; Estados UnidosFil: Tupayachi, Raul. Carnegie Institution for Science. Department of Global Ecology; Estados UnidosFil: Quispe Huaypar, Katherine. Universidad Nacional de San Antonio Abad del Cusco; PerúFil: Montoya Pillco, Milenka. Universidad Nacional de San Antonio Abad del Cusco; PerúFil: Ccori Álvarez, Flor Delis. Universidad Nacional de San Antonio Abad del Cusco; PerúFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Enquist, Brian J.. Arizona State University; Estados UnidosFil: Malhi, Yadvinder. University of Oxford; Reino Unid
    corecore