THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Convergence in the temperature response of leaf respiration across biomes and plant functional types

Citation for published version:

Heskel, MA, O'sullivan, OS, Reich, PB, Tjoelker, MG, Weerasinghe, LK, Penillard, A, Egerton, JJG, Creek, D, Bloomfield, KJ, Xiang, J, Sinca, F, Stangl, ZR, Martinez-de La Torre, A, Griffin, KL, Huntingford, C, Hurry, V, Meir, P, Turnbull, MH \& Atkin, OK 2016, 'Convergence in the temperature response of leaf respiration across biomes and plant functional types', Proceedings of the National Academy of Sciences, pp. 201520282. https://doi.org/10.1073/pnas. 1520282113

Digital Object Identifier (DOI):
10.1073/pnas. 1520282113

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In

Proceedings of the National Academy of Sciences

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Classification: Biological Sciences, Ecology

Title: Convergence in the temperature response of leaf respiration across biomes and plant functional types

Authors: Mary A. Heskel ${ }^{1,2}$, Odhran S. O’Sullivan ${ }^{1,3}$, Peter B. Reich ${ }^{4,5}$, Mark G. Tjoelker ${ }^{4}$, Lasantha K. Weerasinghe ${ }^{1,6}$, Aurore Penillard ${ }^{1}$, John J.G. Egerton ${ }^{1}$, Danielle Creek ${ }^{1,4}$, Keith J. Bloomfield ${ }^{1}$, Jen Xiang ${ }^{7}$, Felipe Sinca ${ }^{8}$, Zsofia R. Stang1 ${ }^{9}$, Alberto Martinez-de la Torre ${ }^{10}$, Kevin L. Griffin ${ }^{11,12}$, Chris Huntingford ${ }^{10}$, Vaughan Hurry ${ }^{13}$, Patrick Meir ${ }^{1,14}$, Matthew H. Turnbull ${ }^{15}$, Owen K. Atkin ${ }^{1,7 *}$

Affiliations:

${ }^{1}$ Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT 2601, Australia
${ }^{2}$ The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543 USA
${ }^{3}$ Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN UK
${ }^{4}$ Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW 2751, Australia
${ }^{5}$ Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, St. Paul, MN 55108, USA
${ }^{6}$ Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400 Sri Lanka
${ }^{7}$ ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 0200, Australia
${ }^{8}$ Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford University, CA 94305, USA
${ }^{9}$ Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
${ }^{10}$ Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
${ }^{11}$ Department of Earth and Environment Sciences, Columbia University, Palisades NY, 10964, USA
${ }^{12}$ Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, 10027, USA
${ }^{13}$ Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
${ }^{14}$ School of Geosciences, University of Edinburgh, Edinburgh, UK
${ }^{15}$ Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
*Correspondence to: Owen.Atkin@anu.edu.au

Keywords: temperature sensitivity $\left(Q_{10}\right)$, climate models, carbon exchange

Abstract

:

Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological, nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning seven biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land surface components of coupled Earth System Models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared to previous estimates.

Significance:

A major concern for terrestrial-biosphere-models is accounting for the temperature response of leaf respiration at regional/global scales. Most widely adopted models incorrectly assume that respiration increases exponentially with rising temperature, with profound effects for predicted ecosystem carbon-exchange. Based on a large study of 231 species in seven biomes, we instead find that the rise in respiration with temperature can be generalized across biomes and plant types, with temperature-sensitivity declining as leaves warm. This finding points to universallyconserved controls on the temperature-sensitivity of leaf energy metabolism. Accounting for the temperature function markedly lowers simulated respiration rates in cold biomes; this finding has important consequences for estimates of carbon storage in vegetation, predicted concentrations of atmospheric carbon dioxide, and future surface temperatures.

Main text:

Plant respiration provides continuous metabolic support for growth and maintenance of all tissues and contributes $\sim 60 \mathrm{Pg} \mathrm{C} \mathrm{yr}^{-1}$ to the atmosphere ($1, \underline{2}$), with $\sim 50 \%$ of the carbon (C) released by whole-plant respiration from leaves (3). As rates of leaf respiration (R) vary substantially with changes in temperature $(T)(\underline{4}, \underline{5})$, even slight increases in ambient T can lead to increases in the flux of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ from leaves to the atmosphere. This has the potential to create concomitant decreases in net primary productivity, and affect the implications of fossil fuel burning by contributing additionally to atmospheric CO_{2} levels due to any imposed surface level global warming. Hence, quantification of the T response of leaf R, and how this response may vary across diverse ecosystems and plant species, is critical to current estimations and future projections of the global carbon cycle (6-8). Evaluating how leaf R relates to T in terrestrial plants will clarify fundamental controls on energy metabolism and enable more accurate parameterization, as leaf R, in addition to photosynthesis ($\underline{9}, \underline{10})$, has been identified as a major source of uncertainty in models of the global carbon cycle ($\underline{8}, \underline{11})$. The response of leaf R to T differs in both magnitude and mechanism with time scale (ㄷ) ; herein, we address how the fundamental short-term response (minutes to hours) varies among plant species and biomes globally.

The short-term T-response of leaf R is strongly regulated by the T-dependence of the reaction rates of enzymes involved in a variety of respiratory pathways in the cytosol and mitochondria within plant cells ($(\underline{5}, \underline{12})$. Given that these many processes influence the realized rates of leaf R across broad ranges in T, the T-dependence of R might be expected to vary widely among contrasting thermal regimes and environments, or among species that differ in metabolic capacity or life span. For example, $R-T$ relations could vary predictably, according to Plant Functional Types (PFTs, groupings of plant species by life history attributes, growth strategies and/or geographic location), or with variation corresponding with types that differ in rates of net photosynthetic CO_{2} uptake and potential growth rates (e.g. fast-growing herbs versus slowergrowing trees). A key issue, therefore, is whether the T-dependence of leaf R has spatially invariant features across the Earth's surface, or instead varies as a consequence of genotypic and
multiple environmental factors. This is critically important, as the global estimation of leaf R is a significant uncertainty in Terrestrial Biosphere Models (TBMs) and associated land surface components of Earth System Models (ESMs). The latter quantify the global carbon cycle now and project it into the future ($\underline{8}, \underline{11}$), including feedbacks as a consequence of anthropogenic emissions of CO_{2} on climate.

Although it has been known for over a century that the near-instantaneous increase in plant R with rising T is non-linear ($1 \underline{13}, \underline{14}$), there has been uncertainty whether a single general form for the leaf $R-T$ relationship applies both phylogenetically and biogeographically (15-17). A widely adopted physiological model framework $(\underline{18}, \underline{19})$ assumes that R exhibits an exponential response to T, with R roughly doubling with every $10^{\circ} \mathrm{C}$ rise in T (corresponding to a fixed " Q_{10} type" formulation, with $Q_{10} \approx 2.0$). Yet, it has long been recognized that the Q_{10} is often not constant nor close to 2.0 except over a limited T range ($\underline{14}, \underline{20}$), and this pattern is consistent when also considering ecosystem respiration (21). For this reason, alternative models have been developed, including modified Arrhenius formulations, Universal Temperature Dependence
 shortcomings of an exponential model that provides a fixed T-sensitivity term across a wide range of temperatures. Here, we evaluate a comprehensive set of empirical, thermally highresolution T response curves for multiple taxa and environments. Doing so enables a full assessment of the suitability of these quantitative physiological models in accurately representing the variation in the observed short-term $R-T$ relationship, and implications of the short-term response in different seasons. We aim to significantly improve how the short-term $R-T$ response is represented, and recognize this is one element of a complex and dynamic process. As leaf R is also impacted by acclimation to sustained changes in growth T, future modeling work will determine the effect of a more accurate short-term T response applied in concert with recent advances in modeling basal rates of leaf $R(\underline{23})$ and longer-term (weeks to months) acclimation of R to changing growth $T \mathrm{~s}(\underline{24}, \underline{25})$.

Physiological model representations of leaf respiratory T responses vary in complexity and in their ability to account for observed biological patterns, such as decreases in the T sensitivity of R over increasing $T \mathrm{~s}(\underline{5}, \underline{17})$ (see Supporting Information for model descriptions
and Figs S1-2). Modification of the T-sensitivity of leaf R (based on (16)) in TBMs and the associated land surface component of ESMs results in significant alterations to modeled carbon fluxes ($\underline{8}, \underline{26}$), demonstrating the high sensitivity of the carbon cycle simulations to the $R-T$ function, and thus the need to improve our understanding and quantification of this relationship. The evidence for apparent complexity in the leaf $R-T$ response $(16,27)$ and consequences for carbon cycling indicates both the need for, and, opportunity to improve quantification of the leaf R - T relationship in globally widespread, but thermally contrasting, biomes. Here, we report on filling that critical knowledge gap.

The goals of our study are three-fold: (1) to quantify the T-response of leaf R through use of a new and comprehensive set of thermally high-resolution field measurements of leaf R across large T ranges for each leaf; (2) to assess the shape of T-response curves in leaves of species representing diverse environments and PFTs; and, (3) to assess the implications of altered T sensitivity of R for simulated carbon fluxes using the land surface component of a leading ESM (28). Using new methods (27) that enabled high-resolution measurement of the T-dependence of leaf R in leaves, we present results from 673 short-term T response curves of 231 species collected in situ across 18 sites representing contrasting biomes, geographical locations and PFTs (Table S 1). Based on this unprecedented dataset of standardized physiological measurements, we provide new evidence of a global, fundamental T response of leaf R in terrestrial plants and thus a mathematical model that outperforms alternative representations of how leaf R responds to T. We also show that in cross-biome analyses, application of this mathematical model significantly alters simulated carbon fluxes, particularly in cold climate ecosystems.

Results

Evaluating Temperature Response Models. Our data of high-resolution measurement of the T response of leaf R enabled a comparison of commonly applied quantitative physiological models to determine which offered the best fit for replicate response curves across the entire $10-45^{\circ} \mathrm{C}$ range. A comparison of residuals from model estimates for all individual leaf response curves for five models (exponential fixed- Q_{10}, Arrhenius, 'Lloyd \& Taylor', variable- Q_{10}, and second-order
log-polynomial function - see Supporting Information) demonstrates that a second-order logpolynomial model best characterized the T response of R (Fig. S2a). This selection is made on the basis that the polynomial model had the best projections of leaf- R against data from over the entire T range, has a straightforward application, and is independent from biological assumptions about activation energies; we applied this approach to all measured response curves that collectively comprise the total mean response (Fig. S2b). Accordingly, to best represent our high-resolution leaf R measurements quantitatively, all individual leaf T response curve data were natural-log-transformed (ln) and to those values, a second-order polynomial model was fitted as:

$$
\begin{equation*}
\ln R=a+b T+c T^{2} \tag{Eq.1}
\end{equation*}
$$

where R is the rate at a given leaf T, and a, b, and c are coefficients that provided the fit that minimized residuals.

The application of a polynomial model fit to high-resolution $\ln R-T$ response curves provides a three-parameter description of leaf R across the T range. The a parameter, which indicates $\ln R$ at $0^{\circ} \mathrm{C}$, determines a reference value offset of the response curve. The b parameter the slope of $\ln R$ vs. T plot at $0^{\circ} \mathrm{C}$ - and the c parameter, which represents any quadratic nonlinearity in $\ln R$ vs. T slope with increasing measuring T, are both key to describing the fundamental shape of the short-term T response of leaf R. To assess the influence of site environment and plant form, we analyzed the variation in values of each model parameter, a, b, and c for diverse biomes and PFTs based on individual leaf sample curves. We calculated this variation for both the entire measured T range $\left(10-45^{\circ} \mathrm{C}\right)$, as well as for shorter, discrete segments (i.e. $15-25^{\circ} \mathrm{C}$) of the entire measured T range, in order to evaluate potential influence of measurement T range on these parameters. No difference was found between the parameters calculated from shorter, discrete T-ranges and the entire measurement T-range, (Tables S2-3, Fig. S3), further justifying the applicability of the polynomial function for this response. Together, mean values of a, b, and c parameters create data-derived equations for leaf R that clearly mirror observed mean respiratory responses aggregated for discrete levels of the two corresponding factors (i.e. biome or PFT, Fig. 1). This approach can also fully capture the deceleration of rates
of R observed as $T \mathrm{~s}$ increase (Figs. 1, S1), clearly demonstrating the utility of the polynomial formulation for creating realistic models of leaf R.

Comparison Among Biomes and Plant Functional Types. Mean species values for the polynomial model parameters (a, b, and c) at each site were statistically compared by biome and PFTs using a nested mixed-model approach (Table 1). The curves presented in Figure 1 show that rates of leaf R at a common T were highest in the coldest biomes (i.e. higher a values for tundra and high altitude tropical rainforests). By contrast, low altitude tropical forests, the warmest biome included in this study (Table S1), exhibited the lowest value of parameter a and the lowest values of leaf R over the measurement ranges of T (Fig. 1a,b). Similarly, variation in leaf R at a common T was found among PFTs (Fig. 1c,d).

In strong contrast to large differences across biomes and PFTs in leaf R at a common measurement T, we found that the rise in R with T as leaves warm follows a remarkably consistent function, suggesting more universal values of parameters b and c. Figure 1 illustrates the common shape of the response curve to leaf T that is almost invariant across plants, despite representing highly diverse growth environments and functional groups. This low variation across species' means of both b and c parameters is present when grouped by either biome or PFT (Table 1).

Based on our observation of a near-universal shared response shape of leaf R to T, we determined the parameters for our global polynomial $R-T$ model (GPM) of Eqn (1). The mean polynomial model parameter values for all species included in our study were: $b=0.1012$ and c $=-0.0005$, which generate the GPM:

$$
\begin{equation*}
\ln R=a+0.1012 T-0.0005 T^{2} \tag{Eq.2}
\end{equation*}
$$

where $\ln R$ and a are as defined for Eq. 1. This equation is an empirically based mathematical model of the instantaneous T response of leaf R (Fig. 2a). Average leaf R for all study species across the $10-45^{\circ} T$ range (within $1^{\circ} \mathrm{C}$ temperature bins; untransformed global mean response in Fig. S2b) - the 'global mean data' - can be effectively summarized by the GPM (Fig. 2a). Values of a do, though, vary significantly across PFTs and biomes, shifting the curve of Eqn (2);
thus, the a parameter value should be appropriately assigned in the GPM to fit the model's application, using a rate measured at a known T or values from our global survey (Table S4).

The input of a known value of leaf $R\left(R_{T \text { ref }}\right.$ in the below equation), measured at a T ($T_{\text {ref }}$ in the below equation) with the universal b and c response curve parameters can be applied to a derivation of our GPM to predict values of leaf $R\left(R_{T}\right)$ at a desired T, according to:

$$
\begin{equation*}
R_{T}=R_{T_{r e f}} \times e^{\left[0.1012 \cdot\left(T-T_{r e f}\right)-0.0005 \cdot\left(T^{2}-T_{r e f}{ }^{2}\right)\right]} \tag{Eq.3}
\end{equation*}
$$

(where $R_{\text {Tref }}=\exp \left(\mathrm{a}+0.1012 T_{\text {ref }}-0.0005 T_{\text {ref }}{ }^{2}\right.$). This equation incorporates the common intrinsic T-sensitivity of respiration (i.e. response curve shape) observed from our field measurements, and when combined with measured or assumed rates of R at $T_{\text {ref }}$, enables prediction of R at various $T \mathrm{~s}$.

The T-sensitivity of the GPM (Fig. 2b), here calculated for illustrative purposes using Q_{10} values, shows decreasing sensitivity of leaf R with increases in T. Up to $35^{\circ} \mathrm{C}$, the decline has similarities to (and a steeper slope than) that reported from more limited data by Tjoelker et al.(16). Moreover, our new GPM demonstrates that leaf R remains more T-sensitive at higher leaf $T \mathrm{~s}$ (e.g. near $45^{\circ} \mathrm{C}$) than assessed by Tjoelker et al.(16).

Impacts on Simulated Annual Respiration. The consequence of using our GPM in existing global models that exclude acclimation responses to sustained changes in growth T is illustrated in Figure 3 which shows annually averaged rates of leaf R for our 18 field sites, comparing JULES estimates modeled with a $Q_{10}=2$ with those from our GPM derivation (Eq. 3).

As a sensitivity study, we replaced the derivation of the GPM (Eq. 3) with the commonly applied fixed Q_{10} formulation, setting $Q_{10}=2$, and compared the two. The difference between annual rates of leaf R calculated using either the derived GPM (Eq. 3) or a fixed Q_{10} equation where $Q_{10}=2$ had almost no impact on at the warm tropical sites (Fig. 3a,b); similarly, there was no effect of the GPM on seasonal variations in leaf R at the tropical sites (Fig. 3c). By contrast, at colder sites, estimates of annual leaf R were markedly lower when calculated using the GPM derivation (e.g. 28\% lower in Toolik Lake, Alaska and 10 to 20% lower in the temperate sites) compared to the fixed Q_{10} function (Fig. 3b), although recognizing these changes are for generally lower R values. At temperate woodland sites with evergreen, long-lived foliage,
replacement of a fixed Q_{10} of 2.0 model with the GPM had its greatest absolute and proportional effect during the cold months of winter, but negligible effect during summer months when leaf T values were near $25^{\circ} \mathrm{C}$. For sites where winters are characterized by winter freezing (and thus where metabolic activity is minimal), use of the GPM reduced estimates of leaf R across the entire growing season (Fig. 3c).

Discussion:

Universality of Temperature Response. Despite the huge diversity in plant growth form and local environment represented in our comprehensive dataset, additionally spanning climatic extremes and plant growth rates, we find remarkable convergence in the functional form of the response of leaf R to T. Basal rates of R vary widely amongst biomes and PFTs (Fig. 1), and are known to be related to differences in growth T, site aridity and leaf functional traits ($\underline{23}, \underline{34}, \underline{35}$). That R at a given T is highest in leaves of arctic tundra plants and lowest in leaves of plants from low elevation tropical forests (Fig. 1a) agrees with the concept that leaf R (when measured at a common T) is higher in plants grown in colder environments (12), and this pattern can be consistently modeled based on known growth $T \mathrm{~s}(\underline{23})$. There is significant variation in the curve offset between PFTs; C_{3} herbs exhibit the highest rates of leaf R across the $10-45^{\circ} \mathrm{C}$ range (Fig. 1c), which is also associated with high rates of leaf R at a common leaf nitrogen compared to other PFT groups ($\mathbf{2 3}, \underline{34}$). However, here we show the overall shape of the response curve, and thus intrinsic T sensitivity of R, does not significantly vary; the only variation is an overall offset of the curve. The consistency in the response of leaf R to T strongly suggests its universality among C_{3} plants and that the T-dependencies of underlying enzymatic controls of multiple metabolic pathways are widely conserved, even among the most thermally contrasting biomes on Earth. Further, a global, fundamental T response can be described in a simple, empirically driven log-polynomial equation, available for incorporating into the land surface component of ESMs and ready to replace current imperfect representations of the short-term T response of leaf R. Notably, when implemented in a leading Terrestrial Biosphere Model (28) for different geographical regions, this equation significantly reduces annual rates of leaf-level respiration in
cold-climates. We believe this global short-term leaf $R-T$ response, when applied in conjunction with data-based models of basal leaf $R(\underline{23})$ and the acclimation response to longer-term growth $T s(\underline{24})$, will have important consequences for predicted rates of ecosystem and global carbon exchange, estimates of future carbon storage in vegetation, predicted concentrations of atmospheric CO_{2}, and impacts of future surface temperatures.

Utility for Predictive Simulation Models. Our finding of a universal T-response provides an opportunity for leaf R to be better represented in ecosystem models, TBMs and associated landsurface components of ESMs. It is well-known that the use of a fixed- Q_{10} or Arrhenius activation energy leads to inaccuracies in estimations of respiratory efflux, especially at relatively high and low $T \mathrm{~s}$ ($\underline{5}$). In particular, Arrhenius-derived functions may overestimate rates at low $T \mathrm{~s}$ and underestimate the decline in T-sensitivity of R (22) (Fig. S1a). To date, there has been no consensus or consistent assessment based on comprehensive datasets on how to represent the T response of R in simulation models (36). Our GPM (Eq. 1) and its parameterization (Eqs. 2, 3) against a massive dataset for R, is comprised of only three and two coefficients respectively, and offers a simple, yet robust, approach to calculating the T response of R in leaves. Importantly, our new GPM demonstrates that leaf R remains T-sensitive at high leaf T s (e.g. near $45^{\circ} \mathrm{C}$; seen in our Fig. S1a compared to variable Q_{10} model (12), which will have important consequences for predicted rates of respiratory CO_{2} efflux at high $T \mathrm{~s}$, particularly as extreme heat-wave events are predicted to increase in frequency and duration (2).

Application of the GPM requires knowledge of basal rates of leaf R, designated by the a parameter (Eq. 2) or measured/assumed rates of R at a standard measurement $T=T_{\text {Ref }}$ (Eq. 3). In cases where the basal rate of R is unknown, we suggest application of specific a parameter values representing appropriate PFTs and/or biomes (Table 1) or species (Table S4). Alternatively, rates of leaf R at common $T_{\operatorname{Ref}}\left(25^{\circ} \mathrm{C}\right)$ reported in a recent global compilation (23) can be used. We believe future integration of the recent global leaf R dataset (23) with the shortterm R-T response model defined by our GPM and climatically variable estimates of longer-term T response of R through acclimation will result in a vastly improved representation of leaf R across scales.

Consequences for Terrestrial C Exchange. Our sensitivity study (Fig. 3) showed that while replacing a fixed Q_{10} of two with the GPM will have little impact on calculated rates of leaf R in lowland tropical forests, impacts are significant for temperate, boreal and arctic/alpine ecosystems. In such ecosystems, reliance on a fixed Q_{10} greatly overestimates annual leaf R, which in turn will result in underestimates of net primary productivity (NPP), as generally TBMs estimate NPP by subtraction of total canopy leaf R from modeled estimates of gross primary productivity (GPP). Though future model implementations that consider the extent to which leaf R acclimates to long-term changes in air T across the globe $(\underline{24}, \underline{25})$ will likely further improve how leaf R is represented in TBMs, our findings point to lower rates of modeled respiratory CO_{2} release - and thus possible higher rates of simulated NPP - at sites further away from the equator, compared to current model scenarios. As replacement of a fixed Q_{10} formulation with our GPM is likely to have profound effects on estimates of global plant R and calculations of NPP, its adoption in ESMs will adjust projections of both contemporary and future carbon storage in vegetation. This includes estimates of PFT composition in TBMs that also calculate biome extent through NPP-dependent competition rules. Furthermore, via influence on atmospheric CO_{2} levels, the GPM will affect estimates of what constitutes 'permissible' fossil fuel emissions needed to stay below any warming thresholds that society determines as unsafe to cross. This might include the presently much-debated limit of two-degree warming since the preindustrial era (37, 38).

Finally, a priority for environmental science remains the building and operating of ESMs with robust parameterizations, allowing trustworthy forward projections of carbon cycle evolution and assessment of the influence of fossil fuel burning on that cycle and associated implications for future climate change. Plant respiration, and any adjustment to that in response to global warming, places a strong control on Earth's carbon cycle and may modulate human influence on future atmospheric CO_{2} concentrations. The urgency to estimate climate change implies ESMs must be operated routinely, both now and in the future. Computational constraints, combined with limited available data, force a compromise in ESMs where numerical code "lumps" features of terrestrial ecosystems into low numbers of PFTs and relatively general
parameterizations. Our study across a massive dataset of leaf R measurements, and subsequent testing and fitting to a model of T response, shows a remarkable level of invariance between geographical sites and biomes. This provides great encouragement that, for leaf R at least, the generality of ESMs can be viewed as a neutral, or perhaps, positive feature.

Methods

Field Sites and Species

Our 18 field sites (see Table S1) cover extensive variation in climate and species diversity across four continents. The seven biomes represented across these sites are: arctic tundra (Tu), boreal forest (BF), temperate deciduous forest (TeDF), temperate woodland (TeW), temperate rainforest (TeRF), high altitude tropical rainforest (TrRF_hi), and high altitude tropical rainforest (TrRF_lw). At each site, a survey of representative woody tree and shrub (and in the Arctic tundra, herbaceous forb) species were selected for measurement. For comparison, these species were classified into the following broad plant functional groups that represent current classification groups in JULES: broadleaved deciduous temperate (BIDcTmp), broadleaved deciduous tropical (BIDcTrp), broadleaved evergreen temperate (BIEvTmp), broadleaved evergreen tropical (BIEvTrp) C_{3} herbaceous (C 3 H), needle-leaved evergreen (NIEv), and broadleaved evergreen shrubs (SEv). A full list of all 231 species included in this study can be found, grouped by site and biome, in Table S4.

High-Resolution Measurements of the Temperature Response of Leaf Respiration

At each field site, replicate branches of sun-lit leaves were cut from plant species and either recut under water or placed in plastic bags containing moistened paper towels to minimize desiccation. Post-sampling, all branches were re-cut again and kept in a water-filled bucket; all measurements occurred on the same day as branch sampling. For individual measurements, whole replicate leaves from these branches, or $\sim 10 \mathrm{~cm}$ shoot segments for conifers and smallleaved species, were placed in a T-controlled, well-mixed cuvette, and allowed to adapt to darkness for 30 minutes. Leaf cuvettes were T-controlled via a thermostatically-controlled circulating waterbath (model F32-HL, JULABO Labortechnik GmbH, Seelbach, Germany) as in O’Sullivan et al. (27) and Heskel et al. (39), or via a Peltier system (3010-GWK1 Gas-Exchange Chamber, Walz, Heinz Walz GmbH, Effeltrich, Germany). O’Sullivan et al. (27), used the same approach to measurement of $R-T$ curves, found no differences between attached and detached
leaves, and to allow for higher replication and species sampling, detached leaves were used for this study.

The exiting air-stream from the cuvette was fed to the 'sample' gas line and infrared gas analyzer of a portable gas exchange system (LI-6400xt, Li-Cor Inc., Lincoln, NE, USA), allowing for instantaneous, continuous rates of CO_{2} efflux from the darkened leaves across the measurement T range. Rates of net exchange were calculated by comparing the 'sample', cuvette-based rates to those of the 'reference' gas line. [CO_{2}] (set to the prevailing ambient concentration) and flow rate ($700 \mu \mathrm{~mol} \mathrm{~s}^{-1}$) of the air entering the cuvette chamber were controlled by the LI-6400XT console flow meter and $6400-01 \mathrm{CO}_{2}$ mixer. Prior to entering the cuvette chamber, air was routed through the LI-6400XT desiccant column to control relative humidity inside the chamber.

After the 30 -minute dark adaption period, the cuvette chamber was cooled to $10^{\circ} \mathrm{C}$. Thereafter, the cuvette chamber was heated continuously at a rate of $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until a maximum rate of respiration was reached (generally leaf T between $55-70^{\circ} \mathrm{C}$), although only data up to $T=$ $45^{\circ} \mathrm{C}$ was used in our model. Throughout the warming period, leaf T was continuously measured with a small-gauge wire chromel-constantan thermocouple pressed to the lower leaf surface in the cuvette chamber and attached to a LI-6400 external thermocouple adaptor (LI6400-13, LiCor Inc., Lincoln, NE, USA), allowing for leaf T to be recorded by the LI-6400XT portable gas exchange system. Over the $10-45^{\circ} \mathrm{C}$ range, leaves typically heated at a rate of $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$ (i.e. matching the rate at which air T increased); however, at higher leaf T, the rate at which leaf T increased often slowed, reflecting an increase in evaporative loss of water from leaf surfaces. The net release of CO_{2} from leaves, as determined from the instantaneous difference between 'sample' and 'reference' lines, was recorded at 30s intervals, allowing for \sim two measurements of R per $1^{\circ} \mathrm{C}$ increase in T, resulting in a continuous, high-resolution T response of R.

Post-measurement, each replicate leaf was removed from the cuvette, placed in a drying oven at $\sim 60^{\circ} \mathrm{C}$ for a minimum of two days, and weighed afterward, so that rates could be expressed on a dry-mass basis ($\mathrm{nmol} \mathrm{CO} 2 \mathrm{~g}^{-1} \mathrm{~s}^{-1}$). Because the measured replicate leaf often became highly desiccated to accurately measure leaf area, to determine area-based fluxes ($\mu \mathrm{mol}$ $\mathrm{CO}_{2} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$), a leaf of similar size and shape and adjacent to the measured leaf was digitally
scanned (or determined with a leaf area meter, LI-3100 LiCor Inc., Lincoln, NE, USA), dried, and weighed. The resulting leaf mass per unit area (LMA) of this adjacent leaf could then be used to calculate the area of the measured leaf (assuming a similar LMA) and the area-based R fluxes.

Quantification of $\boldsymbol{R}-\boldsymbol{T}$ curves and Model Comparison. The $673 R-T$ curves collected by the methods described above required thorough quantification for comparison across replicates, species, sites, biomes, and plant functional types. For each replicate $R-T$ response curves, we assessed the fits commonly applied $R-T$ models, including: (a) an exponential model with a fixed- Q_{10} across the entire T range (though not specifically a fixed Q_{10} of 2 , as is applied in some biosphere models of R); (b) an Arrhenius model; (c) a model of R responding to the UTD as defined by Gillooly et al. (15), which contains an activation energy parameter and utilizes Boltzmann's constant; (d) a model presented by Lloyd \& Taylor (17) to describe the response of soil R to T that includes a temperature-sensitive activation energy; (e) a model that incorporates a variable- Q_{10} response across the T range as described by two parameters; and (f) a simple second order polynomial model. Equations for these models are shown in Supporting Information. To compare how these models fit to data, we fitted each of the aforementioned models to all replicate $R-T$ response curves in JMP (Version 11, SAS Institute, Cary, NC USA), with parameters calculation controlled by the minimal residuals produced from each individual fit for each model. In cases where model convergence was not possible via the curve-fitting software, those replicate curves were not included to calculate mean residuals for the model fit over all replicates. Further, to evaluate the impact of different measurement temperature span (i.e. 10$45^{\circ} \mathrm{C}$ vs. $20-45^{\circ} \mathrm{C}$) on model fits, we compared fit coefficients across all replicate curves at different 'segmented intervals' of the response curve (see Table S2, Fig. S3, and Supporting Information text). Using these data, we also compared model fit coefficients from the approximate $20^{\circ} \mathrm{C} T$-range that best represents the climate of that species (the "ecologically relevant" T-range, see Table S3 and Supporting Information text) to the fit coefficients calculated from all available data from the entire measurement T-range.

Global polynomial model (GPM) calculation. After polynomial curve fit analysis, each replicate curve could be defined by specific a, b, and c parameters. The mean value of replicates
for individual species at given sites were calculated for a, b, and c, resulting in a total of 231 species-site means of these parameters used for our study. To create a 'global model' of the T response of R, we calculated the mean of all 231 species-site mean values of the a, b, and c parameters.

Modeling site-based leaf \boldsymbol{R} with JULES. For our 18 field sites, we incorporated our derived global T-response (Eq. 3), with local values of $R_{\text {Tref, }}$, into an offline version of JULES (Joint UK Land Environmental Simulator) to investigate the potential impacts of altered T-sensitivity of R. JULES is the land surface model of the UK Hadley Centre HadGEM family of Global Circulation Models ($28, \underline{40}$). In its current form, JULES assumes that leaf R doubles for every $10^{\circ} \mathrm{C}$ rise in T (i.e. $Q_{10}=2$); other TBM frameworks have also assumed fixed Q_{10} [e.g. BIOMEBGC (29), PnET-CN (30) CLM4 (31), TEM (32)], or modified Q_{10} [e.g. BETHY (33)] functions. This is done using both the fixed Q_{10} and GPM formulations, and with JULES adopting the site-mean values leaf R at $R_{\text {Tref }}=25^{\circ} \mathrm{C}$ derived from our short-term T-response curves. The Q_{10} value is set as 2.0 for all 18 sites, and similarly for the GPM model, the b and c parameters are invariant, taking their cross-site means (Table 1 and Eq. 3).

Here we use a version of JULES driven with the WATCH Forcing Data ERA-interim (WFDEI) surface climatology (41) for each of the 18 sites and for the period 2010-2014 inclusive. Each site uses the WFDEI gridded data values from its $0.5^{\circ} \times 0.5^{\circ}$ grid resolution nearest to site location; and in time is therefore a subset of the WFDEI data, presently covering 1979-2014. The DGVM component of JULES is kept switched off, and therefore known local values of LAI are prescribed. Four JULES Plant Functional Types (PFTs) were adopted (Broadleaf Trees, Needleleaf Trees, Shrubs and C 3_{3} grasses/herbs). With the DGVM off, then the main difference between these PFTs is the inclusion of deciduous phenology (where observed, affecting the prescribed LAI), and slightly different response curves for stomatal opening.

Our runs are made for each site, weighed by known fractional covers of the four PFTs above (predominantly broadleaf trees). The actual JULES model diagnostic presented (Fig. 3) is the canopy-top level R value ($\mu \mathrm{mol} \mathrm{CO}_{2}\left[\mathrm{~m}^{-2} \text { of leaf cover }\right]^{-1} \mathrm{~s}^{-1}$), representing those fluxes that might be observed in fully sun-exposed leaves at the canopy crown, if fluxes from lower leaves were ignored.

Acknowledgements: This work was funded the Australian Research Council grants/fellowships (DP0986823, DP130101252, CE140100008, FT0991448, NERC NE/F002149/1) to OKA, FT110100457 and NERC NE/F002149/1 to PM, DP140103415 to MGT and USA National Science Foundation International Polar Year Grant to KLG. AM and CH acknowledge the CEH National Capability fund.

Author contributions: OKA, MAH, and OSO'S conceived the project with input from MGT. MAH led data compilation, analysis and writing, supported by OKA, OSO'S, PBR and MGT. All authors contributed to data acquisition, writing, intellectual development and/or performed numerical simulations.

Author information: The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to OKA (Owen.Atkin@anu.edu.au).

References

1. Canadell JG, et al. (2007) Contributions to accelerating atmospheric CO_{2} growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Nat Acad Sci USA 104:18866-18870.
2. IPCC (2013) Climate Change 2013: The Physical Science Basis. (Cambridge, UK and New York, USA).
3. Atkin OK, Scheurwater I, Pons TL (2007) Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol 174:367-380.
4. Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley Respiration Paradigms: 30 Years Later. Annals Bot 86(1):1-20.
5. Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8(7):343-351.
6. King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312(5773):536-537.
7. Valentini R, et al. (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861-865.
8. Huntingford C, et al. (2013) Simulated resilience of tropical rainforests to CO_{2}-induced climate change. Nature Geosci 6(4):268-273.
9. Pappas C, Fatichi S, Leuzinger S, Wolf A, Burlando P (2013) Sensitivity analysis of a process-based ecosystem model: Pinpointing parameterization and structural issues. J Geophys Res: Biogeosci 118(2):505-528.
10. Booth BBB, et al. (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7(2):024002.
11. Atkin OK, Meir P, Turnbull MH (2014) Improving representation of leaf respiration in large-scale predictive climate-vegetation models. New Phytol 202(3):743-748.
12. Atkin OK, Bruhn D, Tjoelker MG (2005) Response of Plant Respiration to Changes in Temperature: Mechanisms and Consequences of Variations in Q_{10}; Values and Acclimation. Plant Respiration, Advances in Photosynthesis and Respiration, eds Lambers H \& Ribas-Carbo M (Springer Netherlands), Vol 18, pp 95-135.
13. Blackman FF, Matthaei GL (1905) Experimental researches in vegetable assimilation and respiration. IV. A quantitative study of carbon-dioxide assimilation and leaf-temperature in natural illumination. Proc Roy Soc Lond. Series B76(511):402-460.
14. Wager HG (1941) On the respiration and carbon assimilation rates of some arctic plants as related to temperature. New Phytol 40(1):1-19.
15. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293(5538):2248-2251.
16. Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q_{10}. Glob Change Biol 7(2):223-230.
17. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315-323.
18. Amthor JS (1984) The role of maintenance respiration in plant growth. Plant Cell Environ 7(8):561-569.
19. Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1(2):157-167.
20. James WO (1953) Plant Respiration (Clarendon Press, Oxford).
21. Mahecha MD, et al. (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329(5993):838-840.
22. Zaragoza-Castells J, et al. (2008) Climate-dependent variations in leaf respiration in a dry-land, low productivity Mediterranean forest: the importance of acclimation in both high-light and shaded habitats. Funct Ecol 22(1):172-184.
23. Atkin OK, et al. (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206(2):614-636.
24. Vanderwel MC, et al. (2015) Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytol 207(4):1026-1037.
25. Slot M, Kitajima K (2015) General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecol 177:885-900.
26. Wythers KR, Reich PB, Bradford JB (2013) Incorporating temperature-sensitive Q_{10} and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change. J Geophys Res: Biogeosci 118(1):77-90.
27. O'Sullivan OS, et al. (2013) High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant Cell Environ 36(7):1268-1284.
28. Clark DB, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics. Geosci Model Dev 4(3):701722.
29. Wang W, et al. (2009) A hierarchical analysis of terrestrial ecosystem model BiomeBGC: Equilibrium analysis and model calibration. Ecol Mod 220:2009-2023.
30. Ollinger SV, Aber JD, Reich PB, Freuder RJ (2002) Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO_{2} and land use history on the carbon dynamics of northern hardwood forests. Glob Change Biol 8(6):545-562.
31. Bonan GB, et al. (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res: Biogeosci 116(G2):G02014.
32. Melillo JM, et al. (1993) Global climate change and terrestrial net primary production. Nature 363(6426):234-240.
33. Ziehn T, Kattge J, Knorr W, \& Scholze M (2011) Improving the predictability of global CO_{2} assimilation rates under climate change. Geophys Res Lett 38(10):L10404.
34. Reich PB, et al. (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11(8):793-801.
35. Reich PB, et al. (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecol 114(4):471482.
36. Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO_{2}. Glob Change Biol 19(1):45-63.
37. Huntingford C, et al. (2012) The link between a global $2^{\circ} \mathrm{C}$ warming threshold and emissions in years 2020, 2050 and beyond. Environ Res Lett 7: 014039.
38. Rogelj J, et al. (2011) Emission pathways consistent with a $2^{\circ} \mathrm{C}$ global temperature limit. Nature Clim Change 1(8):413-418.
39. Heskel MA, et al. (2014) Thermal acclimation of shoot respiration in an Arctic woody plant species subjected to 22 years of warming and altered nutrient supply. Global Change Biol 20(8):2618-2630.
40. Best MJ, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci Model Dev 4(3):677-699.
41. Weedon GP, et al. (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Res 50(9):7505-7514.
42. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184-187.
43. Cox P (2001) Description of the "TRIFFID" Dynamic Global Vegetation Model. (Hadley Centre, Met Office, Bracknell, Berkshire), pp 1-16.
44. Poorter H, Remkes C, Lambers H (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol 94(2):621-627.
45. Atkin OK, Scheurwater I, \& Pons TL (2007) Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol 174(2):367-380.
46. Kruse J, Rennenberg H, \& Adams MA (2011) Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol 189(3):659-677.
47. Elias M, Wieczorek G, Rosenne S, \& Tawfik DS (2014) The universality of enzymatic rate-temperature dependency. Trends Biochem Sci 39(1):1-7.
48. Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark Biochim Biophys Acta. Bioenerg 1366(3):235255.
49. Wiskich JT, Dry IB (1985) The tricarboxylic acid cycle in plant mitochondria: its operation and regulation. Encyclopedia of Plant Physiology. Higher Plant Cell Respiration, eds Douce R \& Day DA (Springer Verlag), pp 281-313.
50. Way D, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosyn Res 119(1-2):89-100.
51. Slot M, Zaragoza-Castells J, Atkin OK (2008) Transient shade and drought have divergent impacts on the temperature sensitivity of dark respiration in leaves of Geum urbanum. Funct Plant Biol 35(11):1135-1146.
52. Armstrong AF, et al. (2008) Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ 31(8):11561169.
53. Huntingford C, Cox PM, Lenton TM (2000) Contrasting responses of a simple terrestrial ecosystem model to global change. Ecol Mod 134(2000):41-58.
54. Monteith JL (1981) Evaporation and surface temperature. Quart J Royal Meteorol Soc 107(451):1-27.
55. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Intern J Climat 25:1965-1978.

Figure Legends

Figure 1. Mean measured leaf respiration (natural log transformed; $\pm \mathrm{SE}$) of biome (a) and plant functional types (PFTs) (c) calculated for each ${ }^{\circ} \mathrm{C}$ from measured species respiration response curves of those categories, for the available temperature ranges. Polynomial models based on species' mean values of a, b, and c (see Table 1) of those biomes (b) and PFTs (d) are shown across the same T range.

Figure 2. Global mean data reflected by modeled $R-T$ and corresponding declining Q_{10} responses. The mean T response of (a) natural \log transformed rates of leaf respiration ($\ln R+/-$ SE, "Global Mean Data", shown with blue symbols with error bars) for all measured species ($n=$ 231) across all biomes and PFTs, overlaid on the Global Polynomial Model (GPM) of $\ln R$ (solid black line, bracketed by dashed lines representing 95% confidence intervals), calculated from the species values of a, b, and c parameters of the polynomial model. The GPM is defined as $\ln R=-$ $2.2276+0.1012^{*} T-0.0005^{*} T^{2}$. The T-response of Q_{10} values (b) based on GPM b and c coefficients as calculated by $Q_{10}=\mathrm{e}^{10^{*}\left(0.1012+\left(2^{*} 0.0005 \mathrm{~T}\right)\right)}$, shown with 95% confidence intervals (dashed lines).

Figure 3. Impact of two T-functions on annual average of modeled instantaneous leaf respiration rates (R) using the JULES coupled climate-carbon model to extrapolate respiration measurements (42, 43). Panel (a) shows annual average of leaf R (averaged over the five years of 2010-2014 inclusive) at 18 globally-distributed field sites (Table S 1), with annual rates of R calculated assuming a fixed Q_{10} of 2.0 (43) or our Global Polynomial Model (GPM; Eq. 3). Annual averages of leaf T (same period) in the upper canopy is shown as green dots. Sites are ordered by temperature, with site codes as shown in Table S1; (b) shows percentage changes in annual averages of rates of leaf R that result from switching from a fixed Q_{10} to our GPM, plotted against annual averages of leaf T - the dashed line shows a parabolic curve fit i.e. with three degrees of freedom; (c) shows seasonal variation in rates leaf R (expressed on a leaf area index (LAI) basis) for three thermally contrasting sites (Toolik Lake (tundra), Alaska; Great Western Woodlands (temperate woodland), Western Australia; and, Paracou (tropical rainforest), French Guiana). Site-averaged leaf R values at $25^{\circ} \mathrm{C}$, measured in the field, were used for the calculations.

Table 1. Biome and plant functional type (PFT) mean values (with 95% confidence intervals) of a, b and c coefficients aggregated across all species $(\boldsymbol{n}=231)$.

Biome	a		b		c	
Tu	$-1.6043{ }^{\text {a }}$	$\begin{aligned} & \hline[-1.8372, \\ & -1.3713] \end{aligned}$	$0.1277{ }^{\text {a }}$	$\begin{aligned} & \hline[0.1190, \\ & 0.1364] \end{aligned}$	-0.00107 ${ }^{\text {a }}$	$\begin{aligned} & {[-0.0012,} \\ & -0.0009] \end{aligned}$
BF	$-2.0043{ }^{\text {a }}$	$\begin{aligned} & {[-2.2781,} \\ & -1.7305] \end{aligned}$	$0.0894{ }^{\text {a }}$	$\begin{aligned} & {[0.0665,} \\ & 0.11221 \end{aligned}$	$-0.00037{ }^{\text {a }}$	$\begin{aligned} & {[-0.0008,} \\ & 0.000031 \end{aligned}$
TeDF	$-2.4286{ }^{\text {a }}$	$\begin{aligned} & {[-2.7959,} \\ & -2.0612] \end{aligned}$	$0.0923{ }^{\text {a }}$	$\begin{aligned} & {[0.0757,} \\ & 0.1089] \end{aligned}$	$-0.00026^{\text {a }}$	$\begin{aligned} & {[-0.0006,} \\ & 0.00004] \end{aligned}$
TeW	$-1.8958{ }^{\text {a }}$	$\begin{aligned} & {[-2.3435,} \\ & -1.4481] \end{aligned}$	$0.0974{ }^{\text {a }}$	$\begin{aligned} & {[0.0716,} \\ & 0.1232] \end{aligned}$	$-0.00040^{\text {a }}$	$\begin{aligned} & {[-0.0008} \\ & -0.00002] \end{aligned}$
TeRF	$-2.1544{ }^{\text {a }}$	$\begin{gathered} {[-2.4057} \\ -1.9032] \end{gathered}$	$0.1014{ }^{\text {a }}$	$\begin{aligned} & {[0.0773,} \\ & 0.1255] \end{aligned}$	$-0.00046{ }^{\text {a }}$	$\begin{aligned} & {[-0.0008,} \\ & -0.0001] \end{aligned}$
TrRF_hi	$-2.0173^{\text {a }}$	$\begin{aligned} & {[-2.5325,} \\ & -1.5021] \end{aligned}$	$0.1154{ }^{\text {a }}$	$\begin{aligned} & {[0.0956,} \\ & 0.1352] \end{aligned}$	$-0.00071^{\text {a }}$	$\begin{aligned} & {[-0.0010,} \\ & -0.0004] \end{aligned}$
TrRF_lw	$-2.7493{ }^{\text {a }}$	$\begin{aligned} & {[-2.9831,} \\ & -2.5155] \\ & \hline \end{aligned}$	$0.0998{ }^{\text {a }}$	$\begin{aligned} & {[0.0879,} \\ & 0.1117] \end{aligned}$	$-0.00047^{\text {a }}$	$\begin{aligned} & {[-0.0007,} \\ & -0.0003] \\ & \hline \end{aligned}$
PFT						
BIDcTmp	$-2.2264{ }^{\text {ab }}$	$\begin{aligned} & {[-2.4829,} \\ & -1.9699] \end{aligned}$	$0.0993{ }^{\text {a }}$	$\begin{aligned} & {[0.0829,} \\ & 0.1158] \end{aligned}$	$-0.00050{ }^{\text {a }}$	$\begin{aligned} & {[-0.0008} \\ & -0.0002] \end{aligned}$
BIDcTrp	$-2.7270{ }^{\text {ab }}$	$\begin{aligned} & \text { [-3.6757, } \\ & -1.7782] \end{aligned}$	$0.1125^{\text {a }}$	$\begin{aligned} & {[0.0961,} \\ & 0.1288] \end{aligned}$	$-0.00058{ }^{\text {a }}$	$\begin{aligned} & {[-0.0008,} \\ & -0.0003] \end{aligned}$
BIEvTmp	$-1.8106^{\text {a }}$	$\begin{aligned} & {[-2.3349,} \\ & -1.2864] \end{aligned}$	$0.0896{ }^{\text {a }}$	$\begin{aligned} & {[0.0577,} \\ & 0.1215] \end{aligned}$	$-0.00021{ }^{\text {a }}$	$\begin{aligned} & {[-0.0007,} \\ & 0.0003] \end{aligned}$
BIEvTrp	$-2.6105^{\text {b }}$	$\begin{gathered} {[-2.8366} \\ -2.3844] \end{gathered}$	$0.1022^{\text {a }}$	$\begin{aligned} & {[0.0912,} \\ & 0.1132] \end{aligned}$	$-0.00052^{\text {a }}$	$\begin{aligned} & {[-0.0007} \\ & -0.0003] \end{aligned}$
$\mathrm{C}_{3} \mathrm{H}$	$-1.7507{ }^{\text {ab }}$	$\begin{aligned} & {[-2.0680} \\ & -1.4334] \end{aligned}$	$0.1271^{\text {a }}$	$\begin{aligned} & {[0.1169,} \\ & 0.1374] \end{aligned}$	$-0.00110^{\text {a }}$	$\begin{aligned} & {[-0.0013,} \\ & -0.0009] \end{aligned}$
NIEv	$-2.0464{ }^{\text {ab }}$	$\begin{aligned} & {[-2.5569} \\ & -1.5358] \end{aligned}$	$0.1125^{\text {a }}$	$\begin{aligned} & {[0.0934,} \\ & 0.1316] \end{aligned}$	$-0.00063{ }^{\text {a }}$	$\begin{aligned} & {[-0.0009,} \\ & -0.0004] \end{aligned}$
SEv	$-1.8150{ }^{\text {a }}$	$\begin{aligned} & {[-2.4609,} \\ & -1.1691] \end{aligned}$	$0.0971{ }^{\text {a }}$	$\begin{aligned} & {[0.0593,} \\ & 0.1349] \end{aligned}$	$-0.00047{ }^{\text {a }}$	$\begin{aligned} & {[-0.0006,} \\ & -0.0004] \end{aligned}$
Global Mean	-2.2276	$\begin{aligned} & {[-2.3966,} \\ & -2.0586] \\ & \hline \end{aligned}$	0.1012	$\begin{aligned} & {[0.0921,} \\ & 0.1104] \\ & \hline \end{aligned}$	-0.00050	$\begin{gathered} {[-0.0006} \\ -0.0004] \end{gathered}$

Biomes and numbers of species (n) include tundra (Tu, $n=20$), boreal forest ($\mathrm{BF}, n=25$), temperate deciduous forest (TeDF, $n=10$), temperate woodland (TeW, $n=67$), temperate rainforest (TeRF, $n=12$), high elevation tropical rainforest (TrRF_hi, $n=16$), and low elevation tropical rainforest (TrRF_lw, $n=81$); PFTs include broadleaf deciduous temperate (BlDcTmp, n $=40)$, broadleaf deciduous tropical ($\mathrm{BlDcTrp}, n=4$), broadleaf evergreen temperate (BlEvTmp , $n=38$), broadleaf evergreen tropical (BlEvTrp, $n=88$), C_{3} herbaceous ($\mathrm{C}_{3} \mathrm{H}, n=13$), needle-leaf evergreen (NIEv, $n=13$), and evergreen shrubs (SEv, $n=35$). Values were calculated using natural-log-transformed rates of leaf respiration $R-T$ curve data available from the $\sim 10-45^{\circ} \mathrm{C}$ curve range. The global mean value was calculated aggregating all individual species parameter values. To determine the effect Biome and PFT groups, we used a mixed-model that nested random effects terms, with Species nested in Site when evaluating Biome, and Species as a single random effect to evaluate the fixed effect of PFT. Post-hoc comparisons based on leastsquare means determine differences between Biome and PFT groups; differences are noted by unshared letters. Confidence intervals were calculated from individual species' curves.

Figure 1

Figure 2

Figure 3

Supporting Information

Materials and Methods

Quantification of R-T curves and model comparison

The main objective of this study was to assess how leaf R responds to T experienced across their current environmental range within the growing season. For this reason, we limited the T range of replicate curves evaluated in this study to $10-45^{\circ} \mathrm{C}$. Though it is possible that T experienced by leaves may exceed this range, especially in arctic tundra and hot, arid woodland ecosystems, 10$45^{\circ} \mathrm{C}$ approximately spans the mean T of the warmest quarter (i.e. warmest 3-month period) for all sites presented in this study (Table S1).

Before analyzing T responses of R across biomes and plant functional types, we needed to determine which model would best describe the nuances of this response. Physiological model representations of plant respiratory T response can vary in their complexity and ability to account for observed biological patterns, such as decreases in the T sensitivity of R over increasing $T \mathrm{~s}$. For example, Arrhenius and fixed- Q_{10} exponential equations, which are widely utilized in many TBMs $(\underline{6}, \underline{7})$ and feature little or no T-sensitivity of the $R-T$ response across biologically relevant T ranges. Thus, these models, and the Universal Temperature Dependence (UTD) model (15) (which provides a nearly identical response as the Arrhenius) tend to over-predict R rates at low and high T s when compared to observed R data (Extended Data Fig. 1). The Lloyd \& Taylor (17) model contains a modified activation energy parameter to improve the representation of R in Arrhenius-based physiological models by allowing for a T-variable response. An $R-T$ model presented by Tjoelker et al. integrates the T-dependence of R more explicitly, which accounts for a predictable T-variable Q_{10} shared among species representing several diverse environments (16). To date, data available to rigorously test alternative empirical model fits were typically constrained by low resolution and a narrow range of measurement $T \mathrm{~s}$, and were further limited by species sample sizes when testing for biomes and PFTs differences. Generally, the inclusion of a T-variable Q_{10} to model the T-response of R substantially improves predicted estimates of R (Fig. S1) compared to models that do not include this parameter (i.e. Arrhenius, UTD, exponential fixed- Q_{10}) and to models whose T-variable parameter effect is less pronounced (i.e.

Lloyd \& Taylor). Recent high-resolution T-response curves for a single species (27) were consistent with the general shape of the T-variable $Q_{10}(\underline{5})$.

Exponential fixed- Q_{10} :

$$
R=R_{\text {Tref }} * Q_{10} \frac{\text { T-Tref }}{10}
$$

where $R_{\text {Tref }}$ is the rate of R at chosen reference $T\left(T_{\text {ref }}\right.$, in $\left.{ }^{\circ} \mathrm{C}\right)$ and Q_{10} is a fixed value.

Arrhenius

$$
R=R_{\text {Tref }} * e^{\left[\frac{E a}{(r * T r e f)} *\left(1-\frac{T r e f}{T}\right)\right]}
$$

where $R_{\text {Tref }}$ is the rate of R at chosen reference $T\left(T_{\text {ref }}\right.$, in K$), E a$ is an activation energy and r is the gas law constant, $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

UTD

$$
R=R_{0} * e^{\left[\frac{E i * T}{k T_{0}{ }^{2} *\left(1+\left(\frac{T}{T 0}\right)\right.}\right]}
$$

where R_{0} is the rate of R at $273 \mathrm{~K}\left(\mathrm{~T}_{0}\right), E i$ is an activation energy and k is Boltzmann's constant, $8.61733 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}$.

Lloyd \& Taylor

$$
R=R_{\text {Tref }} * e^{E_{o}\left[\frac{1}{(T r e f-T 0)}-\frac{1}{T-T 0}\right]}
$$

where R Tref is the rate of R at chosen reference $T\left(T_{\text {ref }}\right), E o$ is an activation energy, and T_{0}, which is a temperature between T and 0 K .

Variable- Q_{10}

$$
R=R_{\text {Tref }}(x-y) *\left(\frac{T+T_{r e f}}{2}\right)^{\frac{T-T r e f}{10}}
$$

where R Tref is the rate of R at chosen reference $T\left(T_{\text {ref }}\right)$, and x and y are constants that describe the temperature dependence of Q_{10}.

Finally, the Polynomial Model (Eq. 1), where a, b, and c are fit coefficients from the second order polynomial applied to ln-transformed R.

Over all the replicates available, we assessed the mean residuals produced from each model at each T, from $10-45^{\circ} \mathrm{C}$ (Fig. S2a). The Arrhenius model and UTD models produced identical fits, due to their similar structure and use of a single activation energy value; for this reason, we treat their response as identical for comparisons (Fig. S2a). We found a pronounced difference between models that included a T-dependent parameter or allowed for T-sensitivity of the T response (variable- Q_{10}, polynomial, and to a lesser degree Lloyd \& Taylor), and models that did not (exponential fixed $-Q_{10}$, Arrhenius/UTD), mainly in their ability to fit R at low $T \mathrm{~s}$. Overall, the models that allowed for the most T-sensitivity - the variable- Q_{10} and the polynomial provided the lowest mean residuals considering all $T \mathrm{~s}$. These results were also seen when fitting all models to the mean R response of individual biomes and plant functional type groups, as well as with the mean R response of all species. Between the variable- Q_{10} and polynomial models, the polynomial model is further removed from the dependence on the concept of Q_{10} formulation, which can be problematic in applying in larger biosphere models, and further, it does not rely on biologically-based assumptions of activation energies. For these reasons we selected to use the polynomial model when comparing the global database of $R-T$ response curves. It should be noted that the main conclusion of this study - the global convergence in T response of leaf $R-$ would still be supported if we chose other models that allow for T-dependent changes in the $R-T$ response (i.e. variable- Q_{10} or Lloyd \& Taylor, data not shown); however, the polynomial fit provides the least error across the T range.

Thus, based on the results of model comparison between the commonly applied $R-T$ model functions on all replicates, we confirmed results found in O'Sullivan et al. (27) that a $2^{\text {nd }}$ order polynomial can best represent how R (here, \log transformed) responds to T between $10-45^{\circ} \mathrm{C}$. The polynomial fit of the replicate T response curves (Eq. 1) provides three coefficients: a, the y -
axis intercept; b, the value of the slope when $T=0^{\circ} \mathrm{C}$; and c, which determines the decline in the slope (i.e. curvature) with increasing measuring T. Thus, each replicate fitted T response curve provides a specific a, b, and c value.

Tests for normality and outlier removal

The total number of T response curves of R originally collected across all field campaigns was 787 , though ~ 40 measured replicate curves were not included in initial analysis due to measurement error caused by instability of the measurement equipment under hot conditions. Replicate measurements were removed from the remaining dataset prior to analysis when values of R at $25^{\circ} \mathrm{C}$ (area- and mass-based), and values of Q_{10} at $25^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ were found to be greater or less than two times the interquartile range of all values (values were log-transformed for normality when necessary). Following that filter for outliers, replicates where values of b and c exceeded more than two times the interquartile range of all remaining values were removed. The final dataset consisted of 673 replicate measured R temperature-response curves resulting in a total of 231 individual species-site means, which were used for data analysis.

Segmented interval analysis

Our study aimed to compare the T response of R, measured at high-resolution between 10 and $45^{\circ} \mathrm{C}$ across species representing diverse ecosystems and plant forms and functional types. Collecting these response curves under field conditions can sometimes restrict the minimum T reached prior to curve measurement initiation due to limitations in the ability of the peltier cooling system of the leaf cuvette to reach $10^{\circ} \mathrm{C}$, especially in hot climates. While the rate of warming and reaching of high temperatures were not restricted by the field site environmental conditions, the starting T was often $\sim 5^{\circ} \mathrm{C}$ above $10^{\circ} \mathrm{C}$ for measurements made at the hotter sites. For this reason, there is some variability in the low, starting T of replicate curves.

The variation in starting T values between curves posed a potential issue when comparing curves of different ranges (i.e. $10-45^{\circ} \mathrm{C}, 17-45^{\circ} \mathrm{C}, 24-45^{\circ} \mathrm{C}$, etc), and their resulting a, b, and c parameters. To address this issue, we performed a 'segmented interval analysis', wherein each replicate curve was divided into $20^{\circ} \mathrm{C}$ length segments $\left(10-30^{\circ} \mathrm{C}, 15-35^{\circ} \mathrm{C}, 20-40^{\circ} \mathrm{C}\right.$, and 25-
$45^{\circ} \mathrm{C}$) and a polynomial fit was applied to each segment (Fig. S3). The values of a, b, and c derived from each segmented interval where then compared to each other and the a, b, and c values derived from the original, full-length, non-segmented curve that included the maximum amount of data (Table S2). A mixed-model analysis, which accounted for the unbalanced dataset and potential random effects of Biome and PFT, indicated that none of the parameter values derived from the distinct, $20^{\circ} \mathrm{C}$ segments differed significantly from the parameter values from response curves that contained all data available (Table S2). While there was some variation between distinct segmented intervals, the lack of significance between any segment and the full length curve supported our use of the full curves, as they provided the most information for a given replicate without compromising comparisons between curves of different lengths.

Ecologically relevant parameters

In addition to the full measured T range $\left(10-45^{\circ} \mathrm{C}\right)$, we also calculated polynomial parameters a, b, and c, for an 'ecologically relevant' T range - a $20^{\circ} \mathrm{C}$ span centered around the mean T value of the warmest quarter at the sampling site, which represents an approximation of growing season T range. The parameters for the 'ecologically relevant' T range (Table S3) follow similar patterns in variation amongst intercept values (a) as those calculated using the 'Full T range', and maintain no difference in b and c between biome or PFT groups, suggesting the fundamental response curve shape is unaffected by measurement T range. Thus, despite differences among biomes and PFTs in the offset, the shared shape and curvature of the response of R to T, as defined by the b and c model parameters, did not differ significantly, whether over the full T range or the 'ecologically relevant' T range (Table 1 and S3).

Parameterizing JULES for modeling leaf- R

The JULES model is the land surface description for the current UK Hadley Centre HadGEM family of Global Circulation Models (28). Two key requirements placed on the model are to determine the split of surface available energy into sensible and latent heat fluxes, and to calculate terrestrial carbon cycling and thus the role of ecosystems in the changing global carbon cycle. The two calculations are coupled, as in one configuration JULES can operate with a

Dynamic Global Vegetation Model (DGVM) component; TRIFFID (28, $\underline{53}$). Climatically induced changes to leaf components such as stomatal opening can alter net primary productivity, which in turn can feedback on energy partitioning via DGVM projections of altered Leaf Area Index (LAI).

The JULES model is also available independent of a GCM, and as a fully offline description of terrestrial response. Our descriptions of leaf R could be modeled completely independent of any land surface model, if leaf-level temperature is known throughout our years of interest. In general this quantity is unavailable, and so the main purpose of our JULES simulations is to generate leaf T values resulting from the WFDEI-based estimated mean screenlevel meteorological conditions (41). Leaf level T is a diagnostic from the JULES solution to the surface energy balance, a consequence of solution to a form of the Penman-Monteith equation (54). This value will depend on parameters set, including LAI (28). In our configuration, as LAI is known at each site, this value is prescribed although it is allowed to change as the model is extrapolated to other seasons to capture phenology on leaf cover - hence the "dynamic" component of TRIFFID is overridden.

Further, in other applications of JULES, leaf R varies through the canopy, and then the energy balance will create different leaf T values through the canopy due to changing light levels. As we are interested in leaf-level response of fully sun exposed leaves, for this run we ignore intra-canopy variability in the resulting R values. That is, a "tree" of LAI of unity, and with no self-shading. The exception to this is inclusion of phenology, where we normalized leaf R by $\operatorname{LAI}(\mathrm{t}) / \mathrm{LAI}_{\mathrm{M}}$, where t is time, $\mathrm{LAI}(t)$ is modeled LAI based only on phenological changes, and $\mathrm{LAI}_{\mathrm{M}}$ is maximum, prescribed LAI.

Supporting Information References:

44. Huntingford C, Cox PM, \& Lenton TM (2000) Contrasting responses of a simple terrestrial ecosystem model to global change. Ecological Modelling 134(2000):41-58.
45. Monteith JL (1981) Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society 107(451):1-27.
46. Hijmans RJ, Cameron SE, Parra JL, Jones PG, \& Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978.

Table S1. Geographic, climatic, and sampling information of field sites from which leaves were sampled for measurement.

Biome	Dates of measurement	Lat. (${ }^{\circ} \mathrm{N}$)	Long. (${ }^{\circ}$ E)	Elevation (m.a.s.I.)	$\begin{aligned} & \text { n MAT } \\ & \text { (}{ }^{\circ} \mathrm{C} \text {) } \end{aligned}$	TWQ $\left({ }^{\circ} \mathrm{C}\right)$	Annual precip. (mm)	Aridity index	PFTs represented	No. Species	No. total reps	Fig. 3A
Tundra												
Toolik Lake, AK, USA	June 2010	68.63	-149.6	720	-11.3	8.2	225	0.61	C3H, BIDcTmp, SEv, NIEv	20	79	USA-1
Boreal Forest												
Umea, Sweden	Aug. 2013	63.821	20.311	29	2.5	14.3	579	1.13	BIDcTmp, NIEv	10	37	Swed
Ely, MN, USA	July 2013	47.956	-91.75	420	3.2	17.6	703	0.9	BIDcTmp, NIEv	15	59	USA-2
Temperate Deciduous Forest												
Black Rk Forest, NY, USA	June 2013	41.408	-74.012	335	7.43	19.52	1103	1.17	BIDcTmp	10	38	USA-3
Temperate Woodland												
Aranda, ACT, AUS	Sept. 2011	-35.275	149.079	580	12.7	19.5	682	0.55	BIEvTmp	10	33	AUS-1
ANU campus, ACT, AUS	March 2012	-35.279	149.108	571	13.1	19.8	637	0.51	BIDcTmp	4	15	AUS-2
Calperum, SA, AUS	March 2013	-34.037	140.674	35	17.25	23.6	255	0.17	SEv, BIEvTmp, NIEv	16	34	AUS-3
College Station, TX, USA	Oct. 2010	30.6	-96.400	103	20	28.5	995	0.68	BIDcTmp, NIEv	2	8	USA-4
Great Western Woodlands,	April 2013	-30.264	120.692	459	18.5	25.6	273	0.18	SEv, BIEvTmp, NIEv, C3H	16	41	AUS-4
WA, AUS												
Jurien Bay, WA, AUS	Nov. 2011	-30.241	115.071	23	18.872	23.83	558	0.39	BIDcTmp, SEv, C3H, BIEvTmp	15	56	AUS-5
Alice Mulga, NT, AUS	Feb. 2012	-22.283	133.249	607	22.4	28.9	321	0.17	BIEvTmp, SEv	4	6	AUS-6
Temperate Rain Forest												
Warra, TAS, AUS	March 2012	-43.095	146.724	86	10.781	14.43	1380	1.69	BIEvTmp, SEv	12	45	AUS-7
Tropical Rainforest (high altitude)												
Wayquecha, Peru	Sept. 2011	-13.19	-71.587	3000	13.4	14.5	335	0.23	BIEvTrp	16	17	PERU-1
Tropical Rainforest (low altitude)												
San Isidro Costa Rica	July 2011	10.38	-84.620	479	24	25	4045	2.61	BIEvTrp, SEv	5	16	CoRi
Atherton, QLD, AUS	Aug. 2012	-17.12	145.632	728	21	23.8	2140	1.47	BIEvTrp	16	58	AUS-8
Cape Tribulation, FNQ, AUS	SSept. 2010	-16.28	145.480	90	25.2	27.5	2087	1.39	BIEvTrp	12	35	AUS-9
Paracou, French Guiana	Oct. 2010	5.27	-52.920	21	25.8	26.2	2824	1.88	BIEvTrp, BIDcTrp	32	76	FrGu
Iquitos, Peru	Sept. 2011	-3.949	-73.434	114	25.3	26.8	2769	1.64	BIEvTrp	16	16	PERU-2

[^0]Table S2. Mean values (+/- S.D.) of coefficients (a, b, and c) of polynomial models of the ln $R-T$ response, calculated for four $20^{\circ} \mathrm{C}$ segmented intervals across the full-measurement range of the response for all replicate curves ($n=673$).

Segmented Interval Range	n	a	S.D.		b	S.D.		c	S.D.	
$10-30^{\circ} \mathrm{C}$	346	-2.1001	1.2962	a	0.0969	0.0944	a	-0.00044	0.00210	a
$15-35^{\circ} \mathrm{C}$	523	-2.1539	1.3440	ab	0.0979	0.0896	a	-0.00045	0.00169	a
$20-40^{\circ} \mathrm{C}$	623	-2.1203	1.8446	a	0.0964	0.1168	a	-0.00042	0.00189	a
$25-45^{\circ} \mathrm{C}$	599	-2.3610	1.4938	b	0.1163	0.0764	b	-0.00076	0.00108	b
Complete available T range	673	-2.2003	1.3559	ab	0.1034	0.0715	ab	-0.00055	0.00110	ab

Values of a, b, and c parameters were statistically compared individually using a mixed-model with the segmented interval range as a fixed-effect, and nests the random effects of Biome and PFT for each replicate. This approach accommodates the unbalanced dataset across the interval ranges. Significant variation between parameters by segment range is marked with unshared letters. Parameter values calculated from $\ln R-T$ curves that include all available data are not significantly different than any parameter values calculated from individual $20^{\circ} \mathrm{C}$ segmented intervals, justifying our use of all available data for the calculation of coefficient values.

Table S3. 'Ecologically relevant' mean a, b and c parameter values and $\mathbf{9 5 \%}$ confidence intervals (in brackets) of biomes and plant functional types (PFTs) across all species.

Biome	a		b	c			n
Tu	$-1.6297{ }^{\text {ab }}$	$\begin{aligned} & {[-2.1322,} \\ & -1.1272] \end{aligned}$	$0.1257{ }^{\text {a }}$	$\begin{gathered} \hline[0.0869, \\ 0.1645] \end{gathered}$	$-0.00095^{\text {a }}$	$\begin{aligned} & {[-0.0018,} \\ & -0.00011] \end{aligned}$	20
BF	$-1.9455^{\text {ab }}$	$\begin{aligned} & {[-2.3502,} \\ & -1.5409] \end{aligned}$	$0.0836{ }^{\text {a }}$	$\begin{aligned} & {[0.0488,} \\ & 0.1184] \end{aligned}$	$-0.00025^{\text {a }}$	$\begin{gathered} {[-0.0010,} \\ 0.0004] \end{gathered}$	25
TeDF	$-1.8827{ }^{\text {ab }}$	$\begin{aligned} & {[-2.2722,} \\ & -1.4931] \end{aligned}$	$0.0423{ }^{\text {a }}$	$\begin{aligned} & {[0.0162,} \\ & 0.0683] \end{aligned}$	$0.00080{ }^{\text {a }}$	$\begin{aligned} & {[0.0002,} \\ & 0.0014] \end{aligned}$	10
TeW	$-1.5478{ }^{\text {a }}$	$\begin{aligned} & {[-2.1334,} \\ & -0.9622] \end{aligned}$	$0.0743^{\text {a }}$	$\begin{aligned} & \text { [0.0357, } \\ & 0.1130] \end{aligned}$	$0.000002{ }^{\text {a }}$	$\begin{gathered} {[-0.0006,} \\ 0.0006] \end{gathered}$	66
TeRF	-2.0273 ab	$\begin{aligned} & {[-2.4007,} \\ & -1.6540] \end{aligned}$	$0.0986{ }^{\text {a }}$	$\begin{aligned} & {[0.0625,} \\ & 0.1347] \end{aligned}$	$-0.00051{ }^{\text {a }}$	$\begin{gathered} {[-0.0014,} \\ 0.0003] \end{gathered}$	13
TrRF_hi	$-1.9061{ }^{\text {ab }}$	$\begin{aligned} & {[-2.4132,} \\ & -1.3990] \end{aligned}$	$0.0961{ }^{\text {a }}$	$\begin{aligned} & {[0.0704,} \\ & 0.1218] \end{aligned}$	$-0.00056{ }^{\text {a }}$	$\begin{aligned} & {[-0.0011,} \\ & -0.00003] \end{aligned}$	16
TrRF_Iw	$-2.7370{ }^{\text {b }}$	$\begin{aligned} & {[-3.1060,} \\ & -2.3679] \end{aligned}$	$0.1070{ }^{\text {a }}$	$\begin{aligned} & {[0.0837,} \\ & 0.1302] \\ & \hline \end{aligned}$	$-0.00038{ }^{\text {a }}$	$\begin{aligned} & {[-0.0008,} \\ & 0.00004] \\ & \hline \end{aligned}$	81
PFT							
BIDcTmp	$-1.9553{ }^{\text {ab }}$	$\begin{aligned} & {[-2.2335,} \\ & -1.6770] \end{aligned}$	$0.0800{ }^{\text {a }}$	$\begin{aligned} & {[0.0578,} \\ & 0.1022] \end{aligned}$	$-0.00013{ }^{\text {a }}$	$\begin{gathered} {[-0.0006,} \\ 0.0003] \end{gathered}$	40
BIDcTrp	$-3.1352{ }^{\text {ab }}$	$\begin{aligned} & {[-4.3860,} \\ & -1.8843] \end{aligned}$	$0.1526{ }^{\text {a }}$	$\begin{aligned} & {[0.0821,} \\ & 0.2230] \end{aligned}$	$-0.00165^{\text {a }}$	$\begin{gathered} {[-0.0038,} \\ 0.0005] \end{gathered}$	4
BIEvTmp	$-1.2877{ }^{\text {a }}$	$\begin{aligned} & {[-1.9003,} \\ & -0.6751] \end{aligned}$	$0.0518{ }^{\text {a }}$	$\begin{aligned} & {[0.0127,} \\ & 0.0909] \end{aligned}$	$0.00047^{\text {a }}$	$\begin{gathered} {[-0.0002,} \\ 0.0011] \end{gathered}$	34
BIEvTrp	$-2.5695{ }^{\text {b }}$	$\begin{aligned} & {[-2.9071,} \\ & -2.2318] \end{aligned}$	$0.0962{ }^{\text {a }}$	$\begin{aligned} & {[0.0756,} \\ & 0.1168] \end{aligned}$	$-0.00037{ }^{\text {a }}$	$\begin{aligned} & {[-0.0007} \\ & -0.000001] \end{aligned}$	92
$\mathrm{C}_{3} \mathrm{H}$	$-1.6821{ }^{\text {ab }}$	$\begin{aligned} & {[-2.1694,} \\ & -1.1948] \end{aligned}$	$0.1272{ }^{\text {a }}$	$\begin{aligned} & {[0.0928,} \\ & 0.1615] \end{aligned}$	-0.00103 ${ }^{\text {a }}$	$\begin{aligned} & {[-0.0017,} \\ & -0.0004] \end{aligned}$	13
NIEv	-1.7876 ab	$\begin{aligned} & {[-2.6843,} \\ & -0.8909] \end{aligned}$	$0.0864{ }^{\text {a }}$	$\begin{aligned} & {[0.0148,} \\ & 0.1579] \end{aligned}$	$-0.00013{ }^{\text {a }}$	$\begin{gathered} {[-0.0015,} \\ 0.0005] \end{gathered}$	13
SEv	$-1.8495{ }^{\text {ab }}$	$\begin{aligned} & {[-2.7611,} \\ & -0.9379] \\ & \hline \end{aligned}$	$0.1003{ }^{\text {a }}$	$\begin{aligned} & {[0.0390,} \\ & 0.1616] \end{aligned}$	-0.00054 ${ }^{\text {a }}$	$\begin{gathered} {[-0.0015,} \\ 0.0005] \\ \hline \end{gathered}$	35
Global Mean	-2.0812	$\begin{aligned} & \hline[-2.3137, \\ & -1.8487] \\ & \hline \end{aligned}$	0.0897	$\begin{aligned} & \hline[0.0747, \\ & 0.1046] \end{aligned}$	-0.00027	$\begin{aligned} & {[-0.0005,} \\ & -.00001] \end{aligned}$	231

Biomes and PFTs are listed in the text of Table 1. The parameters were calculated from a $20^{\circ} \mathrm{C}$ interval of the $R-T$ response curve that best represents T s experienced by an individual species at the site from which it was sampled, based on the mean T of the warmest quarter (55) therefore referred to as the 'Ecologically relevant T range'. The global mean value was calculated considering all species parameter values equally. To determine the influence of Biome and PFT on the parameter values, we used a mixed-model that nested random effect terms, with Species nested in Site when evaluating Biome, and with nested Species as a random effect when evaluating PFT. Significant differences across biomes and PFT groups were evaluated by a posthoc comparison of least-square means, and are indicated by unshared letters. 'Ecologically relevant' values of these parameters are not statistically significantly different from the 'Full T range' parameter values (Table 1), as determined by a separate mixed-model analysis, with Site nested in Biome, and Species nested in PFT.

Figure S1. An example temperature (T) response curve of respiration (R) from $10-45^{\circ} \mathrm{C}$, normalized to the rate of R at $25^{\circ} \mathrm{C}$ (solid black line), displayed with commonly applied functional models of the T-response (also normalized to $25^{\circ} \mathrm{C}$) that vary in their characterization of $R(\mathrm{~A})$ Functional models that do not account for the temperature-dependent T-sensitivity of the $R-T$ response (Exponential-Fixed Q_{10}, Arrhenius / UTD(15)) are represented with dashed lines, and models that do account for this sensitivity (Lloyd \& Taylor(17), Variable $\mathrm{Q}_{10}(\underline{12}, \underline{16})$, and Polynomial(27)) are shown with solid lines. Differences between the functional models are more pronounced at T s below $20^{\circ} \mathrm{C}(\mathrm{B})$ and above $40^{\circ} \mathrm{C}(\mathrm{C})$.

Figure S2. Mean relativized residuals (percent error in prediction) of estimates of commonly applied models based on all replicate \boldsymbol{R} - \boldsymbol{T} response curves. All replicates ($n=673$ leaves) across $10-45^{\circ} \mathrm{C}$ (a) highlight the significance of T-dependent parameter inclusion, as seen in the variable- Q_{10} and polynomial fits (solid lines) in contrast to the fixed- T sensitivity models (broken lines). The global mean response of R to T across all species measured in this study (b, inset, $n=231$) are bracketed by 95% CI (dashed lines).

Figure S3. Segmented interval approach to polynomial model analysis. Three representative leaf respiration (R) - temperature response curves (A) of replicate leaves of sampled species from Toolik Lake, Alaska, USA (AK; Alnus tenufolia), Cape Tribulation, Far North Queensland, AUS (CT; Acmena graveolens), and Great Western Woodlands, Western Australia sites (GWW; Eucalyptus transcontinentalis). To assess the effect of measurement T range variation in a, b, and c parameters calculated from the log-polynomial fit, we used a "segmented interval" approach (B). The segmented interval approach fit polynomial curves across $20^{\circ} \mathrm{C}$ range intervals of replicate $\ln R$ data, specifically $10-30^{\circ} \mathrm{C}$ (blue), $15-35^{\circ} \mathrm{C}$ (green), $20-40^{\circ} \mathrm{C}$ (orange), and $25-45^{\circ} \mathrm{C}$ (light blue) as shown in panel (B). The resulting a, b, and c parameters calculated from these segmented intervals were then statistically compared to each other, and to the a, b, and c values resulting from a polynomial fit that included the entire range of data available from the original measured $R-T$ replica

Table S4. Polynomial parameter values of all species included in analysis, grouped by biome and site. Plant functional type (PFT) is identified for each species. The polynomial curve fit parameters for each species at each site is presented, for both the full fit using all available data from the $R-T$ response curve measurement, and for a $20^{\circ} \mathrm{C}$ segment of the $R-T$ response curve representing an ecologically meaningful T range. An asterisk (*) denotes the use of the next closest $20^{\circ} \mathrm{C}$ segment for the ecologically relevant T range when the most appropriate segment was unavailable given the data from the original curve. The number of replicate measurements made for each species (n) is shown in the far right column.

Biome/Site	Species	PFT	All data available T range			Ecologically meaningful T range			n
Tundra			a	b	c	a	b	c	
Toolik Lake, AK, USA							$10-30{ }^{\circ} \mathrm{C}$		
	Arnica alpina	C 3 H	-1.9003	0.1219	-0.00119	-1.7136	0.0980	-0.00050	4
	Alnus tenuifolia	BIDcTmp	-2.1640	0.1657	-0.00163	-2.5618	0.1997	-0.00231	4
	Anemone narcissiflora	C3H	-1.9126	0.1541	-0.00166	-1.0177	0.1284	-0.00148	5
	Arctostaphylos alpina	BIDcTmp	-1.4768	0.1115	-0.00086	-1.2844	0.0938	-0.00041	3
	Astragalus umbellatus	C3H	-1.4413	0.1365	-0.00123	-1.0394	0.0920	-0.00019	4
	Cassiope tetragona	SEv	-1.9700	0.1106	-0.00085	-2.1632	0.1232	-0.00104	5
	Dryas octopetela	SEv	-1.7594	0.1735	-0.00179	-4.4573	0.3383	-0.00472	4
	Empetrum nigrum	SEv	-2.6064	0.1349	-0.00105	-0.4779	-0.0475	0.00307	4
	Epilobium latifolium	C3H	-1.2596	0.1265	-0.00111	-1.1172	0.1132	-0.00075	4
	Eriophorum angustifolium	C3H	-1.9139	0.1164	-0.00078	-1.8115	0.1054	-0.00051	4
	Ledum palustre	SEv	-0.8136	0.1127	-0.00068	-0.7913	0.1100	-0.00062	3
	Pedicularis capitata	C 3 H	-1.0286	0.1208	-0.00113	-0.9162	0.1094	-0.00087	4
	Picea glauca	NIEv	-0.7909	0.1110	-0.00062	0.0453	0.0039	0.00204	4
	Polygonum bistorta	C3H	-0.7664	0.1154	-0.00099	-0.6725	0.1045	-0.00071	4
	Populus balsamifera	BIDcTmp	-1.5489	0.1265	-0.00110	-1.4311	0.1126	-0.00072	4
	Potentilla nivea	C3H	-1.9075	0.1302	-0.00118	-4.1282	0.3230	-0.00472	3
	Rhododendron lapponicum	BIDcTmp	-2.3657	0.1367	-0.00101	-2.0358	0.0955	-0.00008	4
	Rubus chamaemorus	C3H	-1.6090	0.1436	-0.00143	-1.3039	0.1118	-0.00068	4
	Salix reticulata	BIDcTmp	-0.9819	0.0975	-0.00051	-0.9173	0.0880	-0.00023	4
	Vaccinium vitis-ideae	BIDcTmp	-1.8687	0.1074	-0.00067	-2.7988	0.2108	-0.00355	4

Boreal Forest

Liliodendren tulipifera	BIDcTmp	-3.0140	0.1274	-0.00095	-2.0939	0.0617	0.00034		5
Quercus rubra	BIDcTmp	-2.1856	0.0770	0.00013	-1.3596	0.0296	0.00075		4
Acer saccharum	BIDcTmp	-2.9497	0.1136	-0.00058	-2.3212	0.0518	0.00083		3
Acer rubrum	BIDcTmp	-2.5504	0.1043	-0.00049	-1.2108	-0.0424	0.00294		4
Quercus prinus	BIDcTmp	-1.9351	0.0751	-0.00011	-1.5395	0.0291	0.00106		4
Betula papifera	BIDcTmp	-1.4458	0.0687	-0.00027	-1.5601	0.0674	0.00001		2
Populus grandidentata	BIDcTmp	-1.6903	0.0777	-0.00004	-1.0883	0.0097	0.00149		4
Betula lenta	BIDcTmp	-2.5929	0.0731	0.00000	-3.0612	0.1068	-0.00085		3
Temperate Woodland									
Aranda, ACT, AUS						$10-30{ }^{\circ} \mathrm{C}$			
Eucalyptus blakelyi	BIEvTmp	-1.5723	0.0930	-0.00032	-1.4216	0.0756	0.00012		3
Eucalyptus bridgesiana	BIEvTmp	-2.0647	0.1138	-0.00074	-1.9101	0.0950	-0.00027		3
Eucalyptus dives	BIEvTmp	-1.3507	0.0633	0.00006	-1.4187	0.0608	0.00029		3
Eucalyptus macrorhyncha	BIEvTmp	-1.3916	0.0774	0.00000	-1.3884	0.0780	-0.00004		4
Eucalyptus mannifera	BIEvTmp	-0.8306	0.0461	0.00035	-0.6669	0.0265	0.00084		3
Eucalyptus melliodora	BIEvTmp	-1.5343	0.0771	-0.00003	-1.7622	0.0935	-0.00030		3
Eucalyptus pauciflora	BIEvTmp	-1.7555	0.1119	-0.00080	-1.6504	0.1016	-0.00060		3
Eucalyptus polyanthemos	BIEvTmp	-1.5995	0.0786	-0.00005	-1.3688	0.0537	0.00054		4
Eucalyptus rossii	BIEvTmp	-1.4454	0.0674	-0.00004	-1.5388	0.0768	-0.00024		3
Eucalyptus rubida	BIEvTmp	-1.7403	0.0970	-0.00040	-1.7759	0.0988	-0.00041		4
ANU campus, ACT, AUS						10-30 ${ }^{\circ} \mathrm{C}$			
Populus nigra 'Italica'	BIDcTmp	-3.7575	0.1681	-0.00144	-4.0238	0.1881	-0.00179	*	4
Populus deltoides	BIDcTmp	-3.8372	0.1725	-0.00150	-3.3009	0.1428	-0.00089		3
Salix sepulcralis 'Chrysocoma'	BIDcTmp	-3.2111	0.1569	-0.00164	-3.4437	0.1778	-0.00207	*	4
Gingko biloba	BIDcTmp	-3.7472	0.1415	-0.00128	-2.3382	0.0547	0.00008		5
Calperum, SA, AUS						$15-35{ }^{\circ} \mathrm{C}$			
Acacia stenophylla	BIEvTmp	-1.5959	0.0657	0.00013	-0.3923	-0.0057	0.00134	*	3
Alectryon oleifolius	SEv	-1.3331	0.0346	0.00092	0.0955	-0.0618	0.00252		1
Beyeria opaca	SEv	-3.8414	0.1885	-0.00157	-5.7543	0.2951	-0.00302		1
Callitris gracilis	NIEv	-4.5012	0.1851	-0.00111	1.9808	-0.2471	0.00593		2
Danesa brevifolia	SEv	2.0405	-0.0886	0.00207	-3.1869	0.2721	-0.00399		2

Dodonaea bursariifolia	SEv	-1.4323	0.0861	-0.00052	-1.4469	0.0780	-0.00033	2
Eremophila glabra	SEv	-3.8281	0.2193	-0.00229	-4.1886	0.2446	-0.00272	2
Eucalyptus dumosa	SEv	-0.0393	0.0053	0.00113	0.6025	-0.0407	0.00183	3
Eucalyptus largiflorens	BIEvTmp	-1.5431	0.0784	0.00015	-0.7785	0.0240	0.00109	2
Eucalyptus socialis	BIEvTmp	-0.6571	0.0352	0.00067	0.4020	-0.0419	0.00201	2
Grevillea huegelii	SEv	4.0336	-0.2819	0.00537	8.0851	-0.5664	0.01019	1
Myoporum platycarpum	BIEvTmp	-0.9328	0.0454	0.00037	0.1810	-0.0352	0.00177	2
Senna artemisioides ssp. coriacea	SEv	-0.8773	0.0699	-0.00027	-1.5828	0.1102	-0.00083	2
Senna artemisioides ssp. filifolia	SEv	-2.4214	0.1386	-0.00108	-2.5438	0.1479	-0.00125	3
Templetonia egena	SEv	-0.9752	0.0752	-0.00015	0.0208	-0.0022	0.00108	4
Westringia rigida	SEv	-2.7335	0.1728	-0.00166	-2.6884	0.1698	-0.00161	1
College Station, TX, USA						20-40 ${ }^{\circ} \mathrm{C}$		
Juniperus virginiana	NIEv	-1.9976	0.1079	-0.00056	-2.9153	0.1726	-0.00165	4
Quercus stellata	BIDcTmp	-2.5524	0.1216	-0.00081	-2.6530	0.1313	-0.00097	4
Great Western Woodlands, WA, AUS						15-35 ${ }^{\circ} \mathrm{C}$		
Acacia aneura	BIEvTmp	-7.8968	0.4074	-0.00452	-5.9628	0.2817	-0.00252	1
Acacia burkittii	BIEvTmp	3.2687	-0.2151	0.00417	6.8609	-0.4699	0.00854	1
Acacia hemiteles	SEv	-2.4129	0.0889	-0.00014	-5.1902	0.2396	-0.00209	3
Atriplex nummularia	SEv	2.6815	-0.2050	0.00378	2.6815	-0.2050	0.00378	1
Maierana triptera	SEv	-2.7814	0.1754	-0.00167	-3.8846	0.2428	-0.00274	3
Sclerolaena dicantha	SEv	-2.7089	0.1626	-0.00152	-2.3048	0.1409	-0.00118	* 3
Eremophila scoparia	SEv	-3.1067	0.2109	-0.00195	-6.6149	0.4404	-0.00548	* 3
Eucalyptus clenandii	BIEvTmp	-1.3554	0.0776	-0.00003	0.2226	-0.0327	0.00187	4
Eucalyptus salmonophloia	BIEvTmp	-2.9011	0.1309	-0.00052	-0.9144	0.0136	0.00132	4
Eucalyptus salubris	BIEvTmp	-2.0790	0.1277	-0.00082	-1.0805	0.0628	0.00034	* 3
Eucalyptus transcontinentalis	BIEvTmp	-2.3496	0.1363	-0.00097	-1.5361	0.0942	-0.00042	* 4
Exocarpos cupressiformis	NIEv	-1.9208	0.1132	-0.00062	-2.4648	0.1434	-0.00103	* 2
Maierana sedifolia	SEv	-1.5858	0.0880	-0.00060	3.7553	-0.2852	0.00542	1
Olearia muelleri	SEv	-5.3555	0.2967	-0.00321	-5.6231	0.3123	-0.00343	2
Ptilotus holosericeus	C 3 H	-1.4769	0.0806	-0.00037	-1.7953	0.1053	-0.00076	* 4
Ptilotus obovatus	C3H	-2.9326	0.1539	-0.00139	-2.0925	0.0900	-0.00020	* 2

Tasmannia lanceolata	SEv	-1.9115	0.0820	-0.00021	-1.8607	0.0779	-0.00014	4
Melaleuca squarrosa	BIEvTmp	-1.6897	0.0762	-0.00025	-1.6509	0.0726	-0.00018	4
Eucryphia lucida	BIEvTmp	-2.9189	0.1033	-0.00042	-2.6216	0.0844	-0.00006	4
Phyllocladus aspleniifolius	SEv	-1.4296	0.0542	-0.00004	-2.3743	0.1331	-0.00158	3
Tropical Rainforest (high altitude)								
Wayquecha, Peru						$10-30{ }^{\circ} \mathrm{C}$		
Bejaria aestuans	BIEvTrp	0.5570	0.0543	-0.00070	-0.1414	0.1210	-0.00205	1
Weinmannia crassifolia	BIEvTrp	-2.1059	0.0991	-0.00040	-1.0773	0.0131	0.00130	1
Escallonia paniculata	BIEvTrp	-1.8666	0.1292	-0.00123	-2.0641	0.1431	-0.00148	1
Myrsine coriacea	BIEvTrp	-2.0376	0.1250	-0.00090	-1.8753	0.1106	-0.00060	1
Clethra cuneata	BIEvTrp	-2.6686	0.1269	-0.00067	-2.4671	0.1099	-0.00034	2
Miconia aristata	BIEvTrp	-2.2892	0.1433	-0.00115	-1.9709	0.1230	-0.00084	1
Cinchona macrocalyx	BIEvTrp	-2.3650	0.1252	-0.00078	-2.3347	0.1225	-0.00073	1
Styrax camporum	BIEvTrp	-4.4804	0.1631	-0.00131	-4.5086	0.1658	-0.00137	1
Cinnamomum floccosum	BIEvTrp	-2.1917	0.1531	-0.00124	-1.5127	0.0892	0.00014	1
Axinaea sp	BIEvTrp	-2.2143	0.1362	-0.00102	-2.8795	0.2082	-0.00280	1
Clusia flaviflora	BIEvTrp	-1.8115	0.0953	-0.00011	-2.0457	0.1151	-0.00050	1
Clusis alata	BIEvTrp	-1.3958	0.0329	0.00102	-1.3958	0.0329	0.00102	1
Persea buchtienii	BIEvTrp	-2.2601	0.1430	-0.00105	-2.0153	0.1206	-0.00058	1
Ocotea spp.	BIEvTrp	-2.6109	0.1536	-0.00122	-2.2858	0.1256	-0.00067	1
Podocarpus oleifolius	BIEvTrp	-0.4915	0.0412	0.00028	-0.0561	0.0054	0.00096	1
Hedyosmum maximum	BIEvTrp	-2.0450	0.1248	-0.00090	-1.8668	0.1059	-0.00043	1
Tropical Rainforest (low altitude)								
San Isidro, Costa Rica						$15-35{ }^{\circ} \mathrm{C}$		
Koanophyllon hylonomum	BIEvTrp	-4.4967	0.2029	-0.00231	-5.1167	0.2507	-0.00318	3
Pousandra trianae	BIEvTrp	-3.9626	0.1184	-0.00064	-2.5770	0.0130	0.00128	3
Rinorea hummelii	SEv	-3.8955	0.0779	0.00005	-3.2626	0.0344	0.00074	5
Carapa guianensis	BIEvTrp	-2.7577	0.1149	-0.00084	-2.5982	0.1056	-0.00073	2
Anaxagorea crasipetala	BIEvTrp	-3.9297	0.1134	-0.00044	-4.0310	0.1166	-0.00042	3
Atherton, QLD, AUS						$15-35{ }^{\circ} \mathrm{C}$		
Cardwellia sublimis	BIEvTrp	-2.7427	0.1021	-0.00030	-2.4395	0.0735	0.00032	3

Crytocarya mackinnoniana	BIEvTrp	-1.3421	0.0119	0.00105	-0.9970	-0.0129	0.00165	4
Ficus leptoclada	BIEvTrp	-2.2058	0.1237	-0.00091	-2.1171	0.1130	-0.00065	3
Litsea leefeana	BIEvTrp	-2.1555	0.0678	0.00008	-2.0273	0.0523	0.00046	4
Myristica globosa	BIEvTrp	-2.2019	0.0611	0.00028	-2.1753	0.0614	0.00024	3
Polyscia elegans	BIEvTrp	-2.8780	0.1276	-0.00087	-2.8556	0.1217	-0.00069	4
Alphitonia whitei	BIEvTrp	-2.2374	0.0791	-0.00004	-1.7981	0.0415	0.00072	4
Prunus Turneriana	BIEvTrp	-2.9065	0.0945	-0.00035	-2.6470	0.0672	0.00027	4
Daphnandra repandula	BIEvTrp	-2.7954	0.1047	-0.00061	-2.8072	0.1045	-0.00058	5
Syzgium johnsonii	BIEvTrp	-2.4436	0.0639	0.00006	-2.5360	0.0737	-0.00017	4
Alstonia muelleriana	BIEvTrp	-1.5932	0.0722	0.00006	-1.8779	0.0920	-0.00027	4
Argyrodendron trifoliolatum	BIEvTrp	-3.0064	0.0624	0.00055	-2.9480	0.0670	0.00062	3
Ceratopetalum succirubrum	BIEvTrp	-3.0005	0.0783	0.00008	-3.1542	0.0885	-0.00008	4
Doryphora aromatica	BIEvTrp	-2.4071	0.0621	0.00011	-2.4481	0.0694	-0.00010	3
Flindersia sp.	BIEvTrp	-2.5958	0.1269	-0.00089	-2.6457	0.1280	-0.00086	4
Gillbeea adenopetala	BIEvTrp	-2.5083	0.1101	-0.00065	-2.2505	0.0985	-0.00059	2
Cape Tribulation, FNQ, AUS						$20-40^{\circ} \mathrm{C}$		
Acmena graveolens	BIEvTrp	-2.4074	0.1020	-0.00063	-2.4042	0.0953	-0.00042	2
Argyrodendron peralatum	BIEvTrp	-0.8910	-0.0050	0.00088	-1.1259	0.0079	0.00072	3
Cardwellia sublimis	BIEvTrp	-1.7838	0.0581	-0.00005	-0.7921	-0.0084	0.00102	3
Castanospermum australe	BIEvTrp	-1.1452	-0.0103	0.00117	-1.0438	-0.0034	0.00117	4
Cryptocarya mackinnoniana	BIEvTrp	-1.8409	0.0345	0.00036	-10.8186	0.4955	-0.00551	2
Dysoxylum papuanum	BIEvTrp	-2.7655	0.1335	-0.00106	-4.2070	0.2255	-0.00249	4
Elaeocarpus grandis	BIEvTrp	-0.7934	-0.0105	0.00101	-1.0415	0.0001	0.00093	4
Endiandra leptodendron	BIEvTrp	-1.6457	0.0397	0.00028	-1.4596	0.0245	0.00057	2
Gillbeea whypallana	BIEvTrp	-1.4369	0.0332	0.00035	-1.7981	0.0565	0.00000	4
Myristica globosa ssp. Muelleri	BIEvTrp	-1.5947	0.0275	0.00050	-1.6623	0.0267	0.00059	2
Rockinghamia angustifolia	BIEvTrp	-1.8098	0.0395	0.00018	-2.5668	0.0898	-0.00063	4
Syzygium sayeri	BIEvTrp	-1.1741	0.0178	0.00060	-0.7592	-0.0135	0.00116	3
Paracou, French Guiana						$15-35{ }^{\circ} \mathrm{C}$		
Carapa procera	BIDcTrp	-2.2663	0.1044	-0.00028	-2.5263	0.1200	-0.00049	4
Eperua falcata	BIEvTrp	-2.2418	0.0919	-0.00056	-2.8552	0.1483	-0.00175	4

	Eschweilera coriacea	BIEvTrp	-3.1514	0.1587	-0.00124	-3.0363	0.1514	-0.00113
	Eschweilera parviflora	BIEvTrp	-0.5766	0.0807	-0.00057	1.9239	-0.1705	0.00378
	Iryanthera hostmannii	BIEvTrp	-1.1419	0.0891	-0.00042	-0.8226	0.0643	0.00003
	Lecythis persistens	BIEvTrp	-3.2777	0.1455	-0.00123	-2.8076	0.1030	-0.00034
	Licania alba	BIEvTrp	-0.9058	0.0153	0.00056	-0.5316	-0.0091	0.00094
	Oxandra asbeckii	BIEvTrp	-1.7297	-0.0122	0.00141	-1.9276	-0.0522	0.00261
	Protium opacum	BIEvTrp	-3.2236	0.1447	-0.00134	-3.5757	0.1776	-0.00205
	Recordoxylon speciosum	BIEvTrp	-3.9505	0.1592	-0.00142	-3.9133	0.1517	-0.00120
	Sterculia pruriens	BIDcTrp	-3.9517	0.1310	-0.00092	-4.8895	0.2560	-0.00486
	Symphonia globulifera	BIEvTrp	-4.2184	0.1706	-0.00136	-2.0512	0.0559	0.00034
	Tabebuia insignis	BIEvTrp	-2.8068	0.1479	-0.00130	-3.3238	0.1856	-0.00195
	Theobroma subincanum	BIEvTrp	-3.1584	0.1239	-0.00084	-2.7808	0.0896	-0.00013
	Vismia sessilifolia	BIEvTrp	-4.0248	0.1664	-0.00132	-3.3804	0.1656	-0.00159
	Bocoa prouacensis	BIEvTrp	-3.9077	0.1868	-0.00164	-2.8754	0.1430	-0.00101
	Carapa procera	BIDcTrp	-2.9805	0.1209	-0.00063	-3.1880	0.1420	-0.00112
	Eperua falcata	BIDcTrp	-1.7093	0.0936	-0.00049	-1.9368	0.0922	-0.00011
	Eschweilera coriacea	BIEvTrp	-2.5358	0.0980	-0.00054	-2.9738	0.1400	-0.00147
	Eschweilera sagotiana	BIEvTrp	-2.6420	0.0894	-0.00053	-4.6014	0.2645	-0.00419
	Gustavia hexapetala	BIEvTrp	-4.5294	0.2193	-0.00255	-5.4723	0.3086	-0.00449
	Iryanthera hostmannii	BIEvTrp	-2.8678	0.0895	-0.00028	-2.6035	0.0630	0.00031
	Iryanthera sagotiana	BIEvTrp	-3.8810	0.1499	-0.00116	-4.0750	0.1718	-0.00169
	Lecythis persistens	BIEvTrp	-3.2498	0.1223	-0.00074	-3.6328	0.1461	-0.00110
	Licania alba	BIEvTrp	-2.8305	0.1124	-0.00070	-3.0112	0.1108	-0.00046
	Licania heteromorpha	BIEvTrp	-2.8893	0.1162	-0.00096	-2.9081	0.1064	-0.00084
	Licania membranacea	BIEvTrp	-4.8136	0.1859	-0.00157	-4.8841	0.1901	-0.00163
	Ormosia coutinhoi	BIEvTrp	-3.2368	0.1420	-0.00109	-3.3433	0.1750	-0.00160
	Oxandra asbeckii	BIEvTrp	-3.3506	0.1440	-0.00134	-3.7607	0.1811	-0.00212
	Protium opacum	BIEvTrp	-3.2236	0.1447	-0.00134	-3.5757	0.1776	-0.00205
	Theobroma subincacum	BIEvTrp	-3.5852	0.1530	-0.00156	-3.8224	0.1728	-0.00195
	Vouacapoua americana	BIEvTrp	-1.3438	-0.0705	0.00287	2.3581	-0.3872	0.00921
Iquitos, Peru							15-35 ${ }^{\circ} \mathrm{C}$	

Pourouma indet	BIEvTrp	-4.2885	0.1036	-0.00054	-3.9050	0.0701	0.00014	1
	Luehea indet	BIEvTrp	-2.2342	0.0725	0.00021	-1.4819	0.0066	0.00153
1								
Hevea pauciflora	BIEvTrp	-4.1570	0.0984	-0.00037	-2.9795	0.0083	0.00129	1
Swartzia polyphylla	BIEvTrp	-4.4804	0.1631	-0.00131	-4.5086	0.1658	-0.00137	1
Neea divaricata	BIEvTrp	-1.7812	0.0749	-0.00010	-0.7534	-0.0179	0.00184	1
Richeria grandis	BIEvTrp	-2.5559	0.1126	-0.00095	-2.5593	0.1107	-0.00088	1
Hymenaea courbaril	BIEvTrp	-3.1474	0.1082	-0.00033	-2.8511	0.0840	0.00013	1
Dipteryx micrantha	BIEvTrp	-1.4854	0.0666	-0.00014	-1.2551	0.0434	0.00037	1
Pouteria subrotata	BIEvTrp	-4.8248	0.1329	-0.00085	-4.2634	0.0988	-0.00035	$*$
Licania arachnoidea	BIEvTrp	-3.2732	0.1239	-0.00060	-2.4037	0.0519	0.00081	1
Guatteria schomburgkiana	BIEvTrp	-3.2384	0.1840	-0.00183	-3.2228	0.1820	-0.00177	1
Minquartia guianensis	BIEvTrp	-1.4949	0.0511	0.00041	-0.8485	-0.0069	0.00161	1
Licaria canella	BIEvTrp	-2.0179	0.0877	-0.00030	-1.2761	0.0256	0.00093	1
Hevea guianensis	BIEvTrp	-3.2384	0.1840	-0.00183	-3.2228	0.1820	-0.00177	1
Cathedra acuminata	BIEvTrp	-5.5706	0.1268	-0.00097	-7.1624	0.2568	-0.00357	1
Taralea oppositifolia	BIEvTrp	-3.3512	0.1422	-0.00084	-3.2085	0.1317	-0.00067	1

[^0]: The aridity index is the quotient of mean annual precipitation divided by mean annual evapotranspiration (56).

