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The Carnegie Airborne Observatory 

(CAO) was critical to the first-ever 

mapping of the more than 128 million 

hectares that comprise the country 

of Perú. With its all-weather, inter-

continental capability, combined with its 

unique laser and hyperspectral sensors 

and airborne computing platform, the 

CAO provided 3-D imaging of Peruvian 

ecosystems ranging from lowland 

Amazonian rainforests to high-altitude 

Andean tundra.
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Background

V
egetation is one of the most spatially and temporally dynamic reservoirs 

of carbon in the world. The amount of carbon stored in vegetation above 

ground in woody biomass is particularly variable, and is subject to rapid 

change via land uses that remove vegetation cover, causing carbon emissions. 

Reducing carbon emissions from deforestation and forest degradation, as well as 

from other non-forested ecosystems, is therefore a priority in both national and 

international strategies to conserve ecosystems and to reduce carbon dioxide 

build-up in the atmosphere.

Perú harbors an enormous range of ecological conditions, from hot and humid 

lowland Amazonian forests to high-altitude Andean ecosystems and desert 

conditions on the Pacific coast. The diversity of environments in Perú greatly 

challenges efforts to measure, map and monitor carbon stocks throughout the 

country.

Purpose

We report the first high-resolution geographic study of aboveground carbon 

stocks throughout the more than 128 million hectares that comprise the country 

of Perú. This report communicates the development of our methodology and 

an extensive validation of the resulting high-resolution carbon map of Perú. It 

also provides the first quantitative analysis of the basic environmental factors 

determining the carbon geography of Peruvian ecosystems, political regions, and 

protected areas.

Methodology

To create a map of aboveground carbon density (ACD) at one-hectare resolution, 

we integrated airborne Light Detection and Ranging (LiDAR) technology, a new 

field plot inventory network, freely available satellite imagery, and geostatistical 

scaling techniques. Following initial establishment and operationalization of the 

described methodology, the approach can be readily updated over time to provide 

a long-term monitoring capability with reported uncertainties for every hectare 

within Perú. 

Summary

5
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Performance

Based on an initial environmental stratification of the region, and using the 

Carnegie Airborne Observatory LiDAR, we sampled 6.7 million hectares of 

ecosystems distributed in Perú at a resolution of 1.1 meter. To scale these 

airborne LiDAR samples to the national level, we developed a geostatistical 

modeling approach based on the well-known Random Forest Machine 

Learning (RFML) algorithm, which we used with a suite of environmental 

maps of Perú derived from satellite imagery. The RFML nationwide mapping 

of vegetation canopy height — a key input to mapping of aboveground 

carbon density — was validated in 536,874 additional hectares of direct 

LiDAR measurements distributed throughout the country. This showed that 

vegetation canopy height could be mapped with a precision of 78% and an 

error (RMSE) of 3.5 meters at the national level.

We calibrated the mapped canopy height estimates to field-based estimates 

of aboveground carbon density (ACD; units of Mg C ha-1  or metric tons 

of C per hectare) across a wide range of vegetation types and land-use 

conditions. Our field inventory network is comprised of 272 permanent field 

plots distributed in lowland, submontane and montane ecosystems. Extensive 

validation procedures show that remotely sensed measurements of vegetation 

canopy height can be used to estimate the carbon stocks of laboriously hand-

measured field plots with an average 11.6% uncertainty. This uncertainty is less 

than the uncertainty of field-based estimates of carbon stocks.

Findings

The resulting map of aboveground carbon density in Perú reveals a very wide 

range of ecosystem-level carbon density values, from less than 5 Mg C ha-1 in 

ultra-dry desert systems on the western, leeward side of the Andes, to more 

than 150 Mg C ha-1 in the northeastern, humid lowland Amazonian forests. The 

total estimated aboveground carbon stock of Perú is 6.9223 Pg (billion metric 

tons).

The median carbon density for all Peruvian forests is 99.3 Mg C ha-1, and the 

maximum-recorded density is 167.6 Mg C ha-1. More than 50% of all Peruvian 

forests harbor aboveground carbon densities of more than 100 Mg C ha-1, 

but only 10% of these exceed 125 Mg C ha-1. The vast majority of these high-

biomass forests are located in the lowland and submontane regions of the 

Amazon, usually below 1000 m elevation.

Aboveground carbon densities and total carbon stocks varied enormously by 

Peruvian Regional jurisdiction. Loreto contains 53% of Perú’s aboveground 

carbon stock, owing to the large size of this Region and its particularly high 

carbon densities (98.8 ± 29.4 Mg C ha-1). The second and third largest Regional 

stocks are found in Ucayali and Madre de Dios, respectively. Combined these 

two Regions contain 26% of the total Peruvian carbon stock. Other Regions 

with large stocks include San Martin, Amazonas, Cusco, Junín, Huánuco, 

Pasco and Puno, although together they comprise just 18.5% of the total 

aboveground carbon stock of the country.

Other highlights include: (i) The highest carbon stocks of 128 ± 14 Mg C 

ha-1 are found to the North of the Napo and Amazon rivers, and along the 

Northeast Peruvian border with the Brazilian state of Amazonas. (ii) In the 
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Northern lowlands, the Pacaya-Samiria swampland harbors suppressed and 

highly variable aboveground carbon stocks in the range of 54 ± 28 Mg C ha-1. 

(iii) The cities of Tarapoto and Pucallpa are centers of low forest carbon stocks 

resulting from past deforestation, with Pucallpa being the region of maximum 

loss throughout the Peruvian Amazonian lowlands. (iv) Additional losses are 

clearly visible for Iquitos in Loreto, and especially for Puerto Maldonado in 

Madre de Dios. The latter is closely associated with very large areas of near-

zero carbon storage caused by gold mining. (v) The lowlands of southern Perú 

harbor lower carbon stocks associated with extensive areas of bamboo. (vi) On 

the Pacific coast of Perú, carbon densities are primarily in the 1-8 Mg C ha-1 

range, with local peaks of 22-52 Mg C ha-1 in intensively managed woodland 

plantations.

We assessed the aboveground carbon density and total carbon stocks of 174 

protected areas throughout Perú. A total of 1.816 Pg (billion metric tons) of 

carbon are stored in aboveground vegetation within these protected areas, 

or about 26% of the total estimated aboveground carbon stocks found within 

Perú. This leaves up to 74% of aboveground carbon stocks outside of these 

protected areas. The largest carbon stocks are found in the fifteen largest 

forest reserves, including the Alto Purus, Manu, Cordillera Azul and Bahuaja 

Sonene national parks, Pacaya Samiria and Pucacuro national reserves, and 

the Alto Nanay-Pintuyacu Chambira, Ampiyacu Apayacu, Sierra del Divisor, 

Yaguas and Santiago Comaina reserves. These protected areas alone comprise 

85% of the total aboveground carbon stores among the 174 protected areas 

that we assessed. Within humid Amazonian and Andean forests, the size of 

each protected area is highly correlated with its total carbon stock, with each 

hectare of protection adding an average 95.1 Mg (metric tons) of carbon to the 

biosphere.

Conclusions

Using a strategic and cost-effective combination of airborne LiDAR sampling, 

tactically placed field calibration plots, freely available satellite data, and a 

new geostatistical modeling approach, we have shown that a high-resolution 

geography of aboveground carbon stocks can be revealed for a large and 

environmentally complex country such as Perú. This new carbon geography 

also includes spatially explicit maps of uncertainty, which is essential in 

decision-making for conservation, management and policy development 

efforts associated with ecosystems and societal use of lands.

Our effort focused on the mean and uncertainty of aboveground carbon 

stocks in every hectare of Perú, thereby providing a new basis for all 

stakeholders, large and small, to participate in improving the use and 

conservation of ecosystems. The detailed validation presented at multiple 

steps throughout the study demonstrates that aboveground carbon stocks can 

be estimated and mapped with a degree of uncertainty that is indistinguishable 

from laborious hand-measured, field-based estimates. Moreover, the approach 

presented here is spatially continuous, and thus less prone to error caused by 

environmental and human-driven variation in carbon stocks. Updates to the 

carbon map, as well as spatially explicit changes in carbon stocks, will be far 

easier to implement going forward based on the methodology and base data 

layers presented in this report. 
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T
he international community has championed forest carbon sequestration 

and emission reductions as a strategy to mitigate climate change1. In 

combination, deforestation and forest degradation account for up to 15% 

of global carbon dioxide emissions to the atmosphere2. Yet the geography of 

forest carbon stocks remains poorly known, which leads to great uncertainty in 

creating spatially explicit estimates of forest carbon emissions over time3. Large 

emission uncertainties, in turn, result in financial discounts placed on forest 

carbon, which then decrease its investment power to combat climate change 4,5. 

This ultimately limits forest carbon sequestration projects to volunteer markets 

or demonstration activities, mostly implemented at the project or local scale. 

Future compliance or market-based carbon sequestration agreements will hinge 

upon accurate, high-resolution monitoring at large geographic scales relevant to 

a nested set of stakeholders ranging from individual landowners, to jurisdictional 

agencies, and national governments. The critical resolution for carbon monitoring 

is the hectare (= 2.5 acres), which is the world’s most common unit of land tenure, 

ownership and regulatory policy6. Thus to achieve full accounting the geography 

of carbon stocks must be known for every hectare in a country.

Beyond the policy-driven need for high-resolution mapping and monitoring 

of forest carbon stocks, the geography of terrestrial carbon storage is central 

to our understanding of numerous ecological patterns and processes ranging 

from habitat and biodiversity distributions, to global carbon cycling and climate-

biosphere interactions. Natural tropical forests, for example, store a majority of 

their aboveground carbon (which is 48% of dry biomass) in large, interlocking tree 

canopies that also provide critical habitat for many thousands of avian, mammalian 

and invertebrate species7. In contrast, low carbon stocks in natural tropical forests 

are often indicative of climatic and hydrological limitations to productivity, as well 

as disturbance-driven mortality of forest canopies8,9. By mapping aboveground 

carbon stocks at high resolution, critically important processes that determine 

ecological dynamics and habitat conditions are uniquely revealed.

Numerous factors limit our current understanding of the world’s carbon 

geography. First, the distribution of carbon stocks is highly uneven across the land 

surface, owing to the complex and interactive effects of abiotic (e.g., climate, soils, 

geology, topography, hydrology) and biotic (e.g., community composition, human 

activities) processes10-12. Field sampling techniques alone, such as with inventory 

plots, cannot capture the spatial variability of carbon stocks over large regions, 

and any resulting carbon emission estimates based on field plot data are highly 

vulnerable to large errors. Second, no current satellite systems provide plot-like 

Introduction

9
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sampling measurements with sufficient detail to support robust estimates of 

aboveground carbon stocks at high spatial resolution. As a result, global or 

pan-tropical carbon maps derived from satellites currently may not agree well 

with one another13, and they may not agree with current sparse distributions 

of field inventory plots14. Third, whether sampled with field or remote sensing 

techniques, the acquired metrics of vegetation structure (e.g., tree height, 

diameter) require allometric equations to estimate aboveground carbon 

stocks15. This process is prone to systematic bias, particularly with respect 

to floristic controls on carbon stocks, such as crown architecture and wood 

density16.

We present the first high-resolution geographic study of aboveground carbon 

stocks for the country of Perú. Covering a total area of more than 128 million 

ha, Perú harbors enormous environmental and biological gradients, from 

the warm lowlands of the Amazonian forest in the east, to the cold montane 

ecosystems of the Andes. The forested portion of the country covers 

approximately 68 million ha, making it a core focus of this study. To create a 

map of aboveground carbon stocks at one-hectare resolution, we integrated 

and applied a combination of airborne Light Detection and Ranging (LiDAR) 

technology, freely available satellite imagery, distributed field calibration plots, 

and geostatistical scaling techniques (Figure 1). The methodology, which is 

explained to detail in the Technical Methodology section of this report, is 

scalable to any geography and is readily updateable over time. Following the 

development and extensive validation of the resulting high-resolution carbon 

map of Perú, we quantify for the first time the relative importance of the 

environmental factors that fundamentally determine the carbon geography of 

western Amazonian and Andean ecosystems.

Figure 1 (opposite page)  
Overview of the methodology used 

to map vegetation carbon stocks 

throughout the country of Perú: (A) 

A pre-stratification step combines 

geological, soil, community floristic 

composition, elevation, and forest cover 

maps to forecast the potential range 

of environmental conditions to be 

encountered during airborne surveys. 

(B) The country is gridded into 100 x 

100 km sampling cells, and airborne 

Light Detection and Ranging (LiDAR) is 

used to massively sample each grid cell. 

Over-sampling is achieved by ensuring 

that large areas are covered for each 

potential set of environmental conditions 

estimated during pre-stratification. 

(C) A diverse array of satellite data 

is compiled to provide continuous 

geographic information on vegetation 

cover, topographic variables, and 

climate. (D) The satellite and LiDAR data 

are processed through a geostatistical 

modeling approach, and combined with 

calibrations of LiDAR to field-estimated 

carbon stocks, to map aboveground 

carbon stocks at one-hectare resolution, 

along with spatially explicit uncertainty 

maps.
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Pre-stratification 

Satellite & GPS Data

Environmental Mapping  

Airborne LiDAR 

Carbon Stocks Uncertainty 
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D.
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Carbon Geography of Perú

T
he high-resolution aboveground carbon stock map of Perú is shown in 

Figure 2 (see fold-out). The map reveals a global range of ecosystem-

level carbon density values, from less than 5 Mg C ha-1 in ultra-dry desert 

systems on the western, leeward side of the Andes, to more than 150 Mg C 

ha-1 in the northeastern, humid lowland Amazonian forests. The total estimated 

aboveground carbon stock of Perú is 6.9223 Pg or billion metric tons.

From North to South, the following major features are revealed in this map, as 

annotated in Appendix Figure S1:

1. The highest carbon stocks of 128 + 14 Mg C ha-1 are found to the North of the 

Napo and Amazon rivers, and along the Northeast Peruvian border with the 

Brazilian state of Amazonas.

2. In the Northern lowlands, carbon stocks are 10-15% higher on the lower-

fertility Nauta geologic formations (110 Mg C ha-1) compared to their 

neighboring Pebas geologic formations (95 Mg C ha-1; see GeoEcoElevation 

map in the Technical Methodology section).

3. In the Northern lowlands, the Pacaya-Samiria swampland harbors sharply 

suppressed and highly variable aboveground carbon stocks in the range of 54 + 

28 Mg C ha-1.

4. The transition from the Northern lowland carbon stocks to those found at 

treeline in the Andes is gradual in comparison to that of the Southern lowlands.

5. The cities of Tarapoto and Pucallpa are centers of lost forest carbon stocks 

resulting from deforestation, with Pucallpa being the region of maximum loss 

throughout the Peruvian Amazonian lowlands. Additional losses are clearly 

visible for Iquitos in Loreto, and especially for Puerto Maldonado in Madre de 

Dios. The latter is closely associated with very large areas of near-zero carbon 

storage caused by gold mining17.

6. The lowlands of southern Perú harbor lower carbon stocks associated with 

extensive areas of bamboo (90 + 8 Mg C ha-1).

7. Throughout the upper portion of the Fitzcarrald Arch geologic formation, 

aboveground carbon stocks vary from high values (101 + 12 Mg C ha-1) in local 

valleys to low values (42 + 10 Mg C ha-1) in crest topographic positions. 

Results and Discussion

13



´

0 200 400 600 800100
Kilometers

>150

100

0

50

Ab
ov

eg
ro

un
d 

Ca
rb

on
 D

en
si

ty
M

g 
C 

ha
-1

Aboveground Carbon Density 

Mg C Ha-1

>150100500

Figure 2 
Estimated aboveground carbon stocks 

at one-hectare spatial resolution for the 

country of Perú.

Kilometers



14 THE HIGH-RESOLUTION CARBON GEOGRAPHY OF PERÚ

8. On the Pacific coast of Perú, carbon stocks increase to a maximum of 8 + 2 

Mg C ha-1 in the Ica Region south of Lima. Other coastal communities have 

carbon densities in the 1-8 Mg C ha-1 range, with local peaks of 22-52 Mg C 

ha-1 in orchards and other intensively managed woodland plantations.

Zoom images of many of these findings can also be found in Appendix Figures 

S2-S3.

Map Uncertainty

We mapped the uncertainty in our estimates of aboveground carbon density 

by combining errors from two important sources (Figure 3, Appendix Figure 

S4). The first is the uncertainty in the relationship between airborne LiDAR-

based and field-estimated aboveground carbon density (ACD) (Figure 25; see 

Methods). Our validation process indicated that the mean error of LiDAR-

based estimates of ACD is 11.6%. The second source of error is associated 

with the modeling of the LiDAR canopy height throughout Perú. To determine 

this error, we set aside 536,874 ha throughout the country that were directly 

measured with airborne LiDAR, but were not used in building the models for 

national-scale mapping (see Technical Methodology), and we used these pixels 

to calculate the root mean squared error (RMSE) between LiDAR-based ACD 

and RFML-based ACD. These RMSE results were compiled into ten bins across 

the range of predicted ACD. A polynomial was fit to these data (Appendix 

Figure S5), and was used to determine the uncertainty as a function of mean 

estimated ACD. These two sources of error were combined as the square root 

of the sum of the two squared errors, and the geospatial uncertainties were 

applied to the countrywide map (Figure 3, Appendix Figure S4).

In lowland Amazonian forests, our estimated geospatial uncertainty ranges 

from 5-15% in the highest biomass forests to 20-25% in lower-biomass swamp 

and floodplain forest (Figure 3). These percentage uncertainties equate to 

absolute errors of up to about 30-40 Mg C ha-1 (Appendix Figure S4). In 

deforested zones of the Amazonian lowlands, geospatial uncertainty increases 

to about 50-60% of the per-hectare carbon stocks, or about 1-15 Mg C ha-1. 

Near the Andean treeline, uncertainties increase further to approximately 35-

45% on any given hectare, or about 8-25 Mg C ha-1. On the dry leeward side 

of the Andes, geospatial uncertainty rapidly increases to 60-80%, owing to the 

fact that we only lightly sampled these types of environments with the LiDAR. 

Importantly, these large relative uncertainties, when applied to the extremely 

low aboveground carbon stocks of these dry ecosystems, results in absolute 

errors of less than 4 Mg C ha-1.

Field-based Map Validation

Validation using 57 one-hectare field plots indicated high precision and 

accuracy (slope = 1.01; R2 = 0.73) of the map of aboveground carbon stocks 

(Figure 4). Our national map over-estimated plot-based carbon stock 

estimates by approximately 10 Mg C ha-1. Given the inherent uncertainty of 

15-30% in field-estimated carbon stocks at one-hectare resolution for forests18 

and shrublands19, we considered our bias to be acceptable.
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National-scale Variation in Forest Carbon Stocks

Among all Peruvian forests and woodlands nationwide, we found a highly 

skewed (γ = -0.831) distribution of aboveground carbon stocks (Figure 5). 

The median carbon density for all Peruvian forests is 99.3 Mg C ha-1, and the 

maximum-recorded density is 167.6 Mg C ha-1. More than 50% of all Peruvian 

forests harbor aboveground carbon densities of more than 100 Mg C ha-1, 

but only 10% of these exceed 125 Mg C ha-1. The vast majority of these high-

biomass forests are located in the lowland and submontane regions of the 

Amazon, usually below 500 m elevation.

Environmental Controls on Carbon Stocks

Analysis of the environmental variables used in the national mapping 

methodology revealed that the fractional cover of photosynthetic vegetation 

(PV) is the most important geographic factor predicting aboveground carbon 

stocks throughout Perú (Figure 6). Fractional PV is a quantitative metric derived 

from Landsat satellite imagery, and it is known to be highly sensitive to the 

percentage cover of woody canopy plants20-22. As a result, fractional PV cover 

Figure 4 
Validation of nationally mapped 

estimates of aboveground carbon 

density (ACD) versus field plot inventory 

estimates of ACD for sites across 

Northern, Central and Southern Perú.

Figure 5 
Distribution of aboveground carbon 

density at one-hectare resolution for 

forests throughout the country of Perú.
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is often spatially correlated with aboveground carbon stocks in a wide range 

of ecosystems, from arid shrublands to humid tropical forests23-31. As such, 

it accounted for 26% (+ 9%) of the carbon stocks mapped with the airborne 

LiDAR throughout Perú.

Second to fractional PV cover, changes in elevation also had a large effect 

(18% + 6%) on mapped carbon stocks (Figure 6). Furthermore, after removing 

un-forested and/or deforested areas from the analysis, we found that the 

relationship between elevation and carbon stocks was even clearer (Figure 

7). Independent of floristic composition, precipitation, micro-environment, 

or other factors, average aboveground carbon density decreases by about 

2.3% per meter of elevation gain. However, there is enormous variation within 

each elevation zone, with the maximum variation occurring in the lowlands 

and sub-montane ecosystems below about 1500 meters a.s.l. Moreover, the 

lowlands are about equally likely to harbor very low or high carbon densities 

(Figure 7, less than 400 m a.s.l.). Areas of suppressed carbon storage in the 

lowlands are due to hydrological conditions such as anoxia (swamp-like 

conditions) and changes in soil fertility associated with underlying geologic 

substrate27. In the sub-montane region of 900-1600 m a.s.l., carbon stocks 

remain highly variable and show high-spots particularly in the 1200-1300 

Figure 6 
Relative importance of satellite-derived 

environmental variables in the prediction 

and mapping of aboveground carbon 

density (ACD) throughout Perú. Key: 

(i) Fractional PV is the percent green 

canopy cover in each hectare; (ii) 

Elevation is the height of the land in 

meters above sea level; (iii) Fractional 

NPV is the percent non-photosynthetic 

vegetation or dried, exposed vegetation 

in each hectare — a strong proxy for 

ecological disturbance; (iv) REM is 

the relative elevation model depicting 

local height of the land above nearest 

water body such as a stream or lake; (v) 

Fractional Bare is the percent exposed 

bare surfaces in each hectare — another 

proxy for ecological disturbance; (vi) 

Slope is the tilt of the land surface; (vii) 

Insolation is the average amount of 

solar energy striking the land surface at 

four points in the year (Sept, Mar, Dec, 

June); (viii) Cloud cover is the fraction 

of the year that each hectare is cover in 

clouds, thereby reducing energy input for 

vegetation growth.

Figure 7 
Changes in aboveground carbon density 

(ACD) with elevation throughout the 

forested portions of Perú. Each data 

point represents one hectare.
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m elevation zone. At treeline, which varies from about 3700-4200 m a.s.l., 

depending upon local conditions and past land use, carbon stocks average 11 

Mg C ha-1 (Figure 7). Even at these high altitudes, it is possible to find forests 

with carbon stocks as high as 30 Mg C ha-1.

At the national scale, other critically important determinants of aboveground 

carbon stocks include the fractional cover of non-photosynthetic vegetation 

(NPV), relative elevation (REM) above nearest water body, and fractional cover 

of bare surfaces (Figure 6). Together, these three factors account for about 

32% of the variation in aboveground carbon stocks throughout Perú. Fractional 

NPV and bare substrate cover are well-known metrics of forest disturbance 

including natural processes such as landslides, blow-downs, and gap 

dynamics32, 33, as well as human-driven disturbance such as selective logging, 

fire, and other processes that thin vegetation canopies without complete 

removal of them25,34-39. REM is a proxy for both water access by plants and 

water-related disturbance via flooding.

Compared to the top five factors predicting carbon stocks in Perú, the 

remaining satellite-based variables each accounted for about 3-5% of the total 

variation throughout the country (Figure 6). These included topographic slope 

and aspect, solar insolation throughout the year, and cloudiness. However, 

combined, these factors did account for about 30% of the mapped variation, 

and thus we consider them all to be important in creating the high-resolution 

aboveground carbon map for Perú (Figure 2).

Carbon by Regional Government

Aboveground carbon densities and total carbon stocks varied enormously 

by Peruvian Regional government, which were formerly called Departments 

(Table 1). Loreto contains 53% of Perú’s aboveground carbon stock, owing 

to the large size of this Region and its particularly high carbon densities (98.8 

+ 29.4 Mg C ha-1). The second and third largest Regional stocks are found in 

Ucayali and Madre de Dios, respectively. Together these two Regions contain 

26% of the total Peruvian carbon stock. Other Regions with large stocks 

include San Martin, Amazonas, Cusco, Junín, Huánuco, Pasco and Puno, 

although together they comprise just 18.5% of the total aboveground carbon 

stock of the country.

We present higher-resolution maps of the top ten Regional governments in 

Figures 8-17. Many of the natural and human-mediated patterns in carbon 

stocks can be readily viewed in these maps, with additional findings as follows:

1. In lowland Regions such as Loreto, Ucayali and Madre de Dios (Figures 

8-10), topographic incisions associated with small river and stream activity 

harbor carbon stocks that are 30-50% lower than their non-incision or non-

riparian counterparts.

2. Large active floodplains associated with the Amazon (Figure 8), Ucayali 

(Figure 8-9), and Madre de Dios and Las Piedras rivers (Figure 10) contain 

50-80% lower carbon stocks than neighboring terra firme forests.

3. Regions containing extensive swaths of submontane Andean ecosystems 

such as San Martin, Amazonas, Junín and Pasco (Figures 11-12, 14, 16) are 

prone to high variance in carbon stocks due to a combination of natural 

and human-mediated factors. These include natural landslides on slopes 
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exceeding 38 degrees, mesoclimatic effects associated with topographic 

aspect (local leeward conditions), and extensive deforestation and forest 

degradation.

4. Decreases in carbon stocks at higher elevations of 2500 to 4000 m a.s.l. are 

particularly apparent in the Regions of San Martin, Junín, Huánuco, Pasco and 

Puno (Figures 11, 14-17). The elevational-rate of forest carbon decrease is 

discussed earlier in the report.

Region
Area 
(ha)

Mean Carbon 
Density 

(Mg C ha-1)

SD of Carbon  
Density 

(Mg C ha-1)
Total Carbon 
Stock (Tg C)

Proportion 
of Perú  

(%)

Amazonas 3,930,390 61.9 38.7 242.9 3.51

Ancash 3,595,941 2.3 2.6 8.1 0.12

Apurimac 2,111,640 1.0 2.1 2.2 0.03

Arequipa 6,325,762 2.2 2.6 14.2 0.21

Ayacucho 4,349,951 4.7 13.8 20.4 0.29

Cajamarca 3,304,619 9.2 17.0 30.5 0.44

Callao 14,167 6.4 2.8 0.1 0.01

Cusco 7,207,883 32.2 38.8 231.7 3.35

Huancavelica 2,206,335 1.8 4.2 3.9 0.06

Huánuco 3,720,347 35.2 37.5 130.6 1.89

Ica 2,108,125 7.7 4.2 16.1 0.23

Junín 4,399,697 33.4 37.5 146.4 2.11

La Libertad 2,529,588 4.0 8.2 10.0 0.14

Lambayeque 1,434,306 3.1 2.6 4.4 0.06

Lima 3,499,260 3.3 3.0 11.6 0.17

Loreto 37,511,259 98.8 29.4 3685.1 53.24

Madre de Dios 8,504,866 96.4 23.0 819.2 11.83

Moquegua 1,580,513 2.7 3.2 4.3 0.06

Pasco 2,411,598 51.2 42.5 123.3 1.78

Piura 3,605,927 3.3 4.6 11.7 0.17

Puno 6,796,462 15.6 32.3 106.0 1.53

San Martin 5,096,436 59.8 37.8 303.8 4.39

Tacna 1,608,229 2.9 2.6 4.7 0.07

Tumbes 469,182 10.3 7.0 4.3 0.06

Ucayali 10,533,060 93.7 31.1 986.8 14.26

Table 1 
Mean and standard deviation of 

aboveground carbon density, and total 

aboveground carbon stock, for each 

Peruvian Region. The proportion of 

carbon stocks in each Region relative 

to the total carbon stock of Peru is also 

given. SD = standard deviation. Tg = 

Teragram = one million metric tons.
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Figure 8   
Aboveground carbon density of the 

Peruvian Region of Loreto.
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Figure 9   
Aboveground carbon density of the 

Peruvian Region of Ucayali.
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Figure 10   
Aboveground carbon density of the 

Peruvian Region of Madre de Dios.
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Figure 11   
Aboveground carbon density of the 

Peruvian Region of San Martin.
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Figure 12   
Aboveground carbon density of the 
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Figure 13   
Aboveground carbon density of the 

Peruvian Region of Cusco.
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Figure 14   
Aboveground carbon density of the 
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Figure 15   
Aboveground carbon density of the 

Peruvian Region of Huánuco.
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Figure 16 
Aboveground carbon density of the 
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Figure 17   
Aboveground carbon density of the 

Peruvian Region of Puno.
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Carbon in Protected Areas

We assessed the aboveground carbon density and total carbon stocks of 174 

protected areas within Perú (Table 2, on page 30). A total of 1.816 Pg (billion 

metric tons) of carbon are stored in vegetation within these protected areas, 

or about 26% of the total estimated aboveground carbon stocks found within 

Perú. This leaves up to 74% of aboveground carbon stocks outside of these 

protected areas.

The largest stocks are found in the ten largest forest reserves, including the 

Alto Purus, Manu, Cordillera Azul and Bahuaja Sonene national parks, Pacaya 

Samiria and Pucacuro national reserves, and the Alto Nanay-Pintuyacu 

Chambira, Ampiyacu Apayacu, Sierra del Divisor, Yaguas and Santiago 

Comaina reserves. These protected areas alone comprise 85% of the total 

aboveground carbon stores among the 174 protected areas assessed. Within 

humid Amazonian and Andean forests, the size of each protected area is 

highly correlated with its total aboveground carbon stock (R2 = 0.93; Figure 

18), with each hectare of protection adding an average 95.1 Mg or metric tons 

of carbon aboveground to the biosphere, and more to belowground carbon 

stocks (not estimated here).

In terms of carbon stocks per unit area protected, reserves such as Ampiyacu 

Apayacu, Alto Nanay-Pintayacu Chambira, and Sierra del Divisor contain the 

highest carbon densities of 119.2 + 17.5 Mg C ha-1 (Table 2). Other notable 

protected areas with high carbon densities include Alto Purus (103.7), Purus 

(99.0), Santiago Comaina (96.3), Yanesha (94.4), Manu (94.1), Allpahuayo 

Mishana (93.2), Cordillera Azul (92.0), and Tambopata (89.3). Given the 

protected area status of these reserves, differences in carbon density are most 

likely driven by the environmental factors previously discussed, including 

elevation, canopy structure and natural disturbance regimes, and climate.

Figure 19 

Figure 18 
Relationship between the size of 

protected areas in Perú and their total 

carbon stored above ground.
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Name Type*
Area 
(ha)

Mean Carbon 
Density 

(Mg C ha-1)

SD of Carbon 
Density 

(Mg C ha-1)
Total Carbon 
Stock (Tg C)

A.B. del Canal Nuevo 
Imperial 4 17 13.7 3.6 < 0.001

Abra Málaga 8 1032 18.5 16.5 0.019

Abra Málaga 
Thastayoc - Royal 
Cinclodes 8 74 0.8 0.7 < 0.001

Abra Patricia-Alto 
Nieva 8 1423 57.0 8.3 0.081

Airo Pai 3 247884 119.3 15.2 29.547

Albúfera de Medio 
Mundo 8 685 6.1 2.4 0.003

Allpahuayo Mishana 2 58084 93.4 25.3 5.424

Alto Mayo 4 177740 57.9 24.1 10.009

Alto Nanay- 
Pintuyacu Chambira 8 954646 118.7 11.6 113.361

Alto Purus 1 2514790 103.7 11.4 260.091

Amarakaeri 3 403828 84.2 20.1 33.975

Amazon Natural Park 8 64 82.0 25.3 0.005

Amazon Shelter 8 12 38.0 14.6 < 0.001

Ampay 5 3847 4.5 5.6 0.017

Ampiyacu Apayacu 8 434182 122.2 10.6 53.037

Ancón 7 2186 11.3 5.7 < 0.001

Angostura-Faical 8 8868 16.1 2.8 0.143

Ashaninka 3 184462 66.6 27.3 12.271

Bahuaja 8 6 65.2 42.6 < 0.001

Bahuaja Sonene 1 1102040 88.4 25.6 97.372

Berlin 8 61 40.9 9.0 0.002

Boa Wadack Dari 8 23 76.5 14.5 0.002

Bosque Benjamín I 8 28 98.1 17.4 0.003

Bosque Benjamín II 8 29 108.0 14.1 0.003

Bosque Benjamín III 8 24 69.5 18.9 0.002

Bosque de Palmeras 
de la Comunidad 
Campe 8 5925 4.1 1.7 0.024

Bosque de Pómac 6 10919 31.7 17.3 0.346

Bosque de Puya 
Raymondi - 
Titankayocc 8 6265 0.6 1.0 0.004

Bosque de Zarate 7 546 3.0 1.6 0.002

Bosque Huacrupe-La 
Calera 8 7327 2.4 0.6 0.017

Bosque Moyan-
Palacio 8 8527 2.5 1.2 0.021

Bosque Nublado 8 3372 48.6 14.1 0.164

Bosque Seco 
Amotape 8 125 4.5 0.4 0.001

Bosques de Neblina y 
Paramos de Samanga 8 2906 12.0 12.4 0.035

Table 2  

Mean and standard deviation of 

aboveground carbon density, and total 

aboveground carbon stock, for protected 

areas in Perú. SD = standard deviation.  

Tg = Teragram = one million metric tons. 
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Name Type*
Area 
(ha)

Mean Carbon 
Density 

(Mg C ha-1)

SD of Carbon 
Density 

(Mg C ha-1)
Total Carbon 
Stock (Tg C)

Bosques Nublados de 
Udima Sector Centro 8 73 3.4 2.2 < 0.001

Bosques Nublados de 
Udima Sector Norte 8 2273 2.4 1.2 0.005

Bosques Nublados de 
Udima Sector Sur 8 9889 10.2 7.9 0.100

Bosques Secos Salitral 
- Huarmaca Sector 
Sur 8 3703 2.3 1.3 0.009

Bosques Secos Salitral 
- Huarmaca Sector 
Norte 8 25319 1.9 0.6 0.049

Calipuy 2 64099 1.8 1.6 0.112

Calipuy 5 4499 1.2 0.9 0.005

Camino Verde 
Baltimore 8 20 109.9 13.2 0.002

Canoncillo 8 1506 4.6 1.3 0.007

Cerros de Amotape 1 152933 12.6 6.6 1.921

Chacamarca 6 2436 0.4 1.4 0.001

Chancaybaños 7 2659 4.3 2.1 0.012

Chaparri 8 40524 2.1 1.0 0.086

Chayu Naín 3 23620 57.5 21.1 1.303

Checca 8 563 0.1 0.0 < 0.001

Choquechaca 8 2071 1.8 2.5 0.004

Choquequirao 8 103803 7.7 10.9 0.789

Comunal Tamshiyacu 
Tahuayo 8 420071 117.0 17.7 49.154

Copallín 8 11566 32.0 16.7 0.370

Cordillera Azul 1 1353380 92.0 21.8 124.463

Cordillera de Colán 5 39232 53.7 21.6 2.105

Cordillera Escalera 8 150568 77.8 21.3 11.709

Cordillera Huayhuash 7 67570 2.9 2.5 0.197

Cutervo 1 8231 28.2 16.8 0.232

De la Pampa de 
Ayacucho 6 298 1.4 2.9 < 0.001

El Angolo 8 65979 2.2 1.9 0.144

El Gato 8 44 76.3 16.3 0.003

El Sira 3 616380 83.9 29.0 51.700

Gotas de Agua I 8 3 2.3 0.3 < 0.001

Gotas de Agua II 8 9 2.4 0.5 < 0.001

Güeppí-Sekime 1 203676 112.4 15.1 22.875

Habana Rural Inn 8 29 56.0 15.1 0.002

Hatun Queuña - 
Quishuarani Ccollana 8 232 0.6 0.5 < 0.001

Herman Dantas 8 49 112.6 17.9 0.006

Hierba Buena - 
Allpayacu 8 2282 34.9 14.2 0.080

Table 2 (cont.) 

Mean and standard deviation of 

aboveground carbon density, and total 

aboveground carbon stock, for protected 

areas in Perú.  SD = standard deviation.  

Tg = Teragram = one million metric tons. 
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Name Type*
Area 
(ha)

Mean Carbon 
Density 

(Mg C ha-1)

SD of Carbon 
Density 

(Mg C ha-1)
Total Carbon 
Stock (Tg C)

Huamanmarca-
Ochuro-Tumpullo 8 15680 0.3 0.4 0.005

Huascarán 1 339991 2.7 3.4 0.848

Huaylla Belén - 
Colcamar 8 6341 20.5 18.9 0.130

Huayllapa 8 21043 2.9 2.3 0.060

Huayllay 5 6737 0.4 0.4 0.003

Huaytapallana 8 22384 3.0 4.5 0.067

Huimeki 3 141258 112.5 16.5 15.888

Huiquilla 8 1139 23.1 15.7 0.026

Humedales de Puerto 
Viejo 7 276 5.8 2.2 0.002

Humedales de 
Ventanilla 8 283 7.5 3.4 0.002

Ichigkat Muja-
Cordillera del Cóndor 1 88506 81.5 16.4 7.111

Illescas 7 37886 0.4 0.2 0.016

Imiria 8 135655 33.9 24.5 4.603

Inotawa-1 8 57 104.4 25.7 0.006

Inotawa-2 8 16 106.9 23.4 0.002

Japu - Bosque 
Ukumari Llaqta 8 18762 34.8 23.9 0.645

Jirishanca 8 12085 2.4 2.2 0.029

Junín 2 52561 5.2 7.2 0.134

Juningue 8 37 38.4 16.7 0.001

La Huerta del 
Chaparri 8 50 1.3 0.8 < 0.001

La Pampa del Burro 8 2781 53.8 11.0 0.150

Lachay 2 5131 7.0 2.2 0.036

Laguna de 
Huacachina 7 2457 10.3 1.0 0.025

Lagunas de Mejía 5 726 10.2 5.2 0.007

Laquipampa 8 8371 2.0 1.5 0.017

Larga Vista I 8 20 58.2 15.2 0.001

Larga Vista II 8 25 52.4 19.7 0.001

Las Panguanas 2 8 1 122.5 0.0 < 0.001

Las Panguanas 3 8 7 118.2 4.1 0.001

Las Panguanas 4 8 5 119.2 4.0 0.001

Llamac 8 6707 2.1 2.1 0.014

Lomas de Ancon 7 10959 4.8 1.6 0.052

Lomas de Atiquipa 8 19046 5.6 2.5 0.107

Los Chilchos 8 45987 46.6 18.0 2.141

Los Pantanos de Villa 8 256 9.2 3.7 0.002

Machiguenga 3 218926 80.3 26.6 17.549

Machupicchu 6 37300 10.7 13.0 0.396

Manglares de Tumbes 5 3004 14.1 4.3 0.041
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Name Type*
Area 
(ha)

Mean Carbon 
Density 

(Mg C ha-1)

SD of Carbon 
Density 

(Mg C ha-1)
Total Carbon 
Stock (Tg C)

Mantanay 8 361 2.5 3.4 0.001

Manu 1 1698530 94.1 26.1 159.718

Matsés 2 420596 118.8 19.2 49.978

Megantoni 5 215854 60.8 27.7 13.116

Microcuenca de Paria 8 767 3.2 2.4 0.002

Milpuj - La Heredad 8 16 2.1 0.6 < 0.001

Nor Yauyos-Cochas 8 221252 1.4 2.2 0.302

Nuevo Amanecer 8 30 116.8 20.8 0.004

Otishi 1 305979 50.8 22.9 15.391

Pacaya Samiria 2 2170220 72.9 29.2 158.286

Pacllon 8 14793 2.2 2.0 0.033

Pagaibamba 4 2038 11.5 7.1 0.023

Pampa Galeras 
Barbara D’ Achille 2 8008 0.2 0.1 0.002

Pampa Hermosa 5 11541 40.7 19.0 0.469

Pampacorral 8 764 0.4 1.0 < 0.001

Panguana 8 132 82.9 21.2 0.011

Paracas 2 335432 12.5 3.5 1.389

Paraíso Natural Iwirati 8 101 93.7 13.7 0.009

Pillco Grande- 
Bosque de Pumataki 8 275 6.8 7.6 0.002

Pta Salinas,Isla 
Huampanú,Isla 
Mazorca 2 13686 2.6 1.1 < 0.001

Pucacuro 2 637916 114.1 11.2 72.758

Pucunucho 8 22 25.2 9.2 0.001

Pui Pui 4 54509 9.6 16.1 0.508

Punta Atico 2 3451 12.2 6.3 0.001

Punta Coles 2 3389 10.3 5.9 0.002

Punta Colorado 2 2190 6.4 0.4 < 0.001

Punta Culebras 2 2932 4.7 1.3 < 0.001

Punta Hornillos 2 2772 13.0 4.8 0.001

Punta La Chira 2 2448 8.5 3.1 < 0.001

Punta La Litera 2 2043 8.8 0.8 0.001

Punta Lomas 2 2398 16.3 2.3 < 0.001

Puquio Santa Rosa 4 68 8.1 3.0 0.001

Purus 3 202659 99.0 11.1 20.050

Qosqoccahuarina 8 1824 0.5 0.9 0.001

Refugio K’erenda 
Homet 8 35 51.5 15.6 0.002

Reserva Paisajistica 
Cerro Khapia 7 18487 0.3 0.2 0.005

Río Abiseo 1 272428 46.7 33.5 12.640

Río Nieva 7 36344 62.8 15.7 2.281

Sagrada Familia 8 126 67.6 20.3 0.009

Table 2 (cont.) 

Mean and standard deviation of 

aboveground carbon density, and total 

aboveground carbon stock, for protected 

areas in Perú.  SD = standard deviation.  

Tg = Teragram = one million metric tons. 
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Name Type*
Area 
(ha)

Mean Carbon 
Density 

(Mg C ha-1)

SD of Carbon 
Density 

(Mg C ha-1)
Total Carbon 
Stock (Tg C)

Salinas y Aguada 
Blanca 2 369768 0.6 1.3 0.209

San Antonio 8 352 2.6 5.7 0.001

San Fernando 2 154718 6.4 2.6 0.713

San Juan Bautista 8 25 52.5 33.4 0.001

San Marcos 8 991 13.5 15.2 0.013

San Matias San Carlos 4 149321 88.3 27.9 13.180

Santiago Comaina 7 398488 104.8 15.4 41.720

Sele Tecse-Lares Ayllu 8 974 0.4 0.4 < 0.001

Selva Botanica 8 171 115.1 22.4 0.020

Selva Virgen 8 25 80.4 19.1 0.002

Sierra del Divisor 7 1478180 116.2 15.5 171.671

Sub Cuenca del 
Cotahuasi 8 490550 0.9 1.5 0.450

Sunchubamba 8 61097 2.4 2.8 0.145

Tabaconas Namballe 5 32267 26.0 20.3 0.837

Tambo Ilusion 8 14 27.1 22.9 < 0.001

Tambopata 2 280234 89.4 20.2 25.046

Taypipiña 8 659 0.1 0.0 < 0.001

Tilacancha 8 6804 3.8 7.0 0.026

Tingo María 1 4776 75.0 20.6 0.358

Titicaca 2 36192 0.8 1.7 0.001

Tumbes 2 19422 20.7 5.2 0.402

Tuntanain 3 94994 97.5 16.3 9.261

Tutusima 8 5 35.3 8.2 < 0.001

Uchumiri 8 10250 0.3 0.4 0.003

Vilacota Maure 8 125175 0.9 1.8 0.110

Yaguas 7 871383 117.6 14.8 102.448

Yanachaga-Chemillén 1 113611 57.5 27.0 6.359

Yanesha 3 33398 92.3 27.4 3.081

*Protected area type:

1. National Park
2. National Reserve
3. Communal Reserve
4. Protected Forest
5. National Sanctuary
6. Historical Sanctuary
7. Reserve Zone
8. Other
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U
sing a strategic and cost-effective combination of airborne LiDAR 

sampling, tactically placed field calibration plots, freely available satellite 

data, and a new geostatistical modeling approach, we have shown that 

a high-resolution geography of aboveground carbon stocks can be derived for 

a large and environmentally complex country such as Perú. This new carbon 

geography also includes spatially explicit maps of uncertainty, which is essential in 

decision-making for conservation, management and policy development efforts 

associated with ecosystems and societal use of lands. Our effort focused on the 

mean and uncertainty of aboveground carbon stocks in every hectare of Perú, 

thereby providing a new basis for all stakeholders, large and small, to participate 

in improving the use and conservation of ecosystems. Our detailed validation 

work at multiple steps within the process demonstrates that aboveground 

carbon stocks can be estimated and mapped with a degree of uncertainty that is 

indistinguishable from laborious hand-measured, field-based estimates. Moreover, 

the approach presented here is spatially continuous, and is thus far less prone 

to uncertainty caused by environmental and human-driven variation in carbon 

stocks.

Our approach is now established for the country of Perú. Updates to the carbon 

map, as well as spatially explicit changes in carbon stocks, will be far easier to 

implement going forward. First, carbon emissions from deforestation, forest 

degradation and other losses from non-forested ecosystems can be monitored 

against this high-resolution carbon map over time. This can be done at low 

cost using free Landsat imagery and with operational forest cover monitoring 

software such as CLASlite22, 40. Second, any new field plot inventory data can be 

ingested into the LiDAR-to-carbon stock calibration to improve it over time for all 

types of ecosystems. This can be done on an opportunistic basis, such as when 

new ecosystems are considered for more detailed calibration, or as new forest 

programs are implemented in the future. Finally, the LiDAR component can be 

updated with cost-effective airborne sampling missions, and likely with far smaller 

data volume than we used in our effort to geostatistically over-sample the country 

of Perú. An estimate of the geographic coverage of future airborne LIDAR data 

needed to update the map is between 300,000 and 500,000 hectares, which 

can be accomplished in just a few weeks of flight operations with standard LiDAR 

equipment and processing software. Critically, any loss or gain of uncertainty in 

the carbon map can be monitored with incoming LiDAR data, allowing for a fine-

tuning of the amount of LiDAR sampling required to minimize errors to their low 

current levels reported here. 
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Study Region

T
he study covers the country of Perú. The vast majority of the aboveground 

carbon is found in humid forests stretching from the Andean treeline 

to the lowland Amazonian forests as far as the Ecuadorian, Colombian, 

Brazilian and Bolivian borders. A much smaller amount of dry tropical forest is 

said to exist primarily in the northern portion of the country, and those areas 

were fully incorporated in the study. The study also includes less understood 

regions including Andean tundra (Páramos) and high-altitude grasslands, as well as 

woodlands and shrublands in the inter-Andean corridor.

General Approach

Our general mapping approach is based on the original high-resolution method 

presented by Asner41, with a series of improvements developed through testing 

and analysis in a wide variety of countries and ecosystems27,29-31,42. The approach 

combines readily available satellite and geographic information system (GIS) 

datasets at one-hectare or finer resolution, with airborne LiDAR and field plot 

calibration data, in a modeling framework to develop maps of aboveground 

carbon density (ACD; units of Mg C ha-1 = metric tons C ha-1) with spatially-explicit 

uncertainty estimates (Figure 1).

The core technology is airborne LiDAR, which yields highly detailed measurements 

of forest canopy height and vertical canopy profile (Box 1) that predictably scale 

with variation in aboveground carbon stocks. Recent studies of a wide range of 

vegetation types worldwide demonstrate that airborne LiDAR can be used to 

estimate ACD at one-hectare resolution with a precision and accuracy matching 

estimates based on field measurements alone43. When properly calibrated, 

airborne LiDAR-based and field plot-based estimates of forest carbon stocks 

approach just 10% absolute disagreement at one-hectare spatial resolution, across 

a wide range of vegetation types including tropical forests44, 45. This offset of 

around 10% is lower than the typical errors incurred in field plot-based estimates 

of tropical forest carbon stocks at one-hectare resolution46. This suggests that 

airborne LiDAR can be used to extend field-plot networks to far larger spatial 

scales. Critically, airborne LiDAR-estimated stocks of aboveground carbon can be 

generated over hundreds of thousands of hectares per day — a task that cannot be 

accomplished with field plots.

A second key aspect of the approach to derive high-resolution carbon maps relies 

on machine learning algorithms to scale airborne LiDAR samples up to full regional 
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What is LiDAR?

Light Detection and Ranging (LiDAR) instruments emit short-duration laser 

pulses that illuminate a target and measure its location in three dimensions (x, y 

and z). Because the time elapsed from when the laser pulse is emitted to when 

it is received is known, as well as the exact position of the sensor in the aircraft 

(including the roll, pitch, and yaw), the distance to the object can be calculated 

and the vertical distribution of the surface measured (Figure B1). Airborne 

LiDAR sensors emit near-infrared laser light, typically between 900 and 1100 

nanometers. In this wavelength range, vegetation foliage is partly transmissive, 

allowing the laser light to pass through the canopy to the ground (Figure B2). 

With each interaction of this laser light with the canopy elements, such as 

foliage, some of the light is returned to the sensor, allowing for measurement 

of the vertical distribution of the canopy tissues. The resolution at which the 

returned laser information is collected depends upon the distance between the 

sensor and the target. The closer the sensor is to the object, the greater the 

density of measurements, and the higher the resolution of the LiDAR results. 

However, the closer the distance, the smaller the area covered by the laser 

footprint. Although aspects of LiDAR data collection and analysis are expensive, 

it becomes highly cost-effective over large areas as compared to field surveys, 

and it is becoming increasingly available in many regions. Furthermore, because 

of certain fixed costs, the cost of LiDAR per hectare decreases with the area 

covered during a survey campaign. 

Figure B1

Figure B2

Figure B1  

Example of airborne LiDAR data 

collected over lowland Amazonia by the 

Carnegie Airborne Observatory. Laser 

pulses are sent and returned to a LiDAR 

sensor on board an aircraft, scanning 

from side to side as the plane moves 

forward in the air, creating a 2-D spatial 

coverage. Each near-infrared wavelength 

laser beam penetrates the canopy, 

returning light along its pathway to the 

ground. This interaction is digitized by 

the LiDAR receiver, and is used to map 

vegetation height (top image), underlying 

terrain (bottom image), and the layering 

of the vegetation in between (not shown 

but see Figure B2).

Figure B2  
Cross-sectional view of vegetation 

structure collected by the Carnegie 

Airborne Observatory LiDAR. Different 

aspects of the three-dimensional 

vegetation structure are measured with 

LiDAR: (A) canopy height, (B) vertical 

layering or profile, and (C) underlying 

topography.
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or country-wide coverage maps. For decades, stratification and sampling 

of forests based on a priori environmental information, such as elevation or 

forest type, has served as the method to extrapolate carbon stock estimates 

from field inventory plots47. However, stratification-based methods can yield 

artificial boundaries in the resulting carbon maps, particularly when applied 

across highly diverse environmental conditions27. In response to this problem, 

Baccini et al.2 employed a Random Forest Machine Learning (RFML) algorithm 

to model the relationship between LiDAR-based forest carbon samples 

and a portfolio of spatially extensive satellite data sets. RFML fits multiple 

environmental datasets (predictors) to estimates of vegetation structure or 

biomass (response), as described later. In doing so, a direct scaling of LiDAR 

samples to full-coverage maps can be derived without artificial boundaries 

between ecosystems that often occur using traditional stratification 

approaches. Recently, Mascaro et al.48 showed that scaling LiDAR-based 

carbon samples up to a regional level was 60% more accurate with RFML 

compared to traditional stratification approaches. In addition, Baccini and 

Asner49 demonstrated that RFML methods can be quickly and cost-effectively 

updated with new carbon data over time, allowing for dynamic long-term 

monitoring. Another attractive characteristic of RFML is its ability to provide 

quantitative information on the environmental variables most predictive of 

current carbon distributions42, 48.

LiDAR Flight Planning

We used airborne LiDAR to massively sample plant canopy structure 

throughout the portions of Perú containing woody vegetation. The final map 

of aboveground carbon density (ACD) relied on an airborne LiDAR sampling 

approach that supplies data to the RFML upscaling methodology (described 

below). This required a focus of many aircraft flights on forested ecosystems, 

but it also included extensive portions of grassland, shrubland, savanna, and 

open woodland ecosystems. We approached this challenge by over-sampling 

the land surface using a preliminary stratification of the country as a flight-

planning guide. The stratification was based on geologic substrate, soils, 

topography and large known shifts in community composition. We created this 

flight-planning map by fusing a variety of previously published and new spatial 

data sources described here.

We started with a base map called the Geological Map of Perú, provided at 

1:1,000,000 scale by INGEMMET50. In the time since the publication of this 

map, field and mapping studies of geology, soil and vegetation patterns in 

western Amazonia have advanced, and these new data both support and 

inform the INGEMMET map. These data include a new estimate of lowland 

geomorphic surfaces derived from extensive Landsat satellite and field 

sampling of plants and soils. We also used maps of topography from the 

NASA Shuttle Radar Topography Mission (SRTM), ecological systems from 

NatureServe.org, and other spatial datasets to extend and enhance detail to 

the INGEMMET map. We also incorporated information from more recent 

field inventories of plants and soils for portions of Perú. Integration of these 

datasets was carried out in ten summary steps:

1. A geological study of the Nanay river drainage indicated that it is distinct 

from the surrounding, cation-rich Pebas geologic formation, and is more 

appropriately grouped with the cation-poor Nauta formation51. This 
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reassignment was supported by image interpretation and detailed field 

sampling52. 

2. Northern Peruvian river terraces dating to the Pleistocene are former 

courses of large rivers such as the Amazon or Napo, which have been 

abandoned and now lie above the contemporary floodplain. Due to the 

high-energy and clay-removing conditions under which these sediments 

were deposited, they are typically sandy and nutrient-poor. Unlike 

contemporary floodplain deposits, terraces do not receive regular nutrient 

inputs from river flooding, resulting in distinct forests adapted to the 

nutrient poor soils. The INGEMMET map was revised to show the location 

and extent of these Pleistocene terraces that were delineated using Landsat 

and SRTM data53.

3. The INGEMMET map designates the land to the east of the Pastaza River 

and within the Corrientes River drainage as Pebas formation, with the 

exception of an area between the upper Corrientes and Pastaza Rivers. 

Based on field sampling of both soils and plants in these drainages52, we 

reassigned this area to the Nauta formation, and expanded the Nauta 

formation to the west of the Pastaza River.

4. The Pastaza Fan is the second-largest alluvial fan in the world54, consisting 

of volcaniclastic debris transported by the Pastaza River from the Cotopaxi 

volcano of Ecuador and deposited on the southern extent of the Iquitos 

uplift. In its southern reaches, between the Pastaza and Maranon Rivers, 

the Pastaza Fan is permanently inundated due to ongoing subsidence, and 

this inundation creates massive tracts of forested wetlands. North of the 

Pastaza River, however, the Pastaza Fan is well drained, and its rich, black 

soils exert a unique influence on plant species composition. Because of 

this large difference in hydrologic regimes, and its importance for forest 

composition and structure, we separated the Upper Pastaza Fan into a new 

class. In addition, on the basis of Landsat and SRTM data53, we reclassified 

a portion of the lower Corrientes drainage as Upper Pastaza Fan. Last, 

because a NatureServe ecological map captures Quaternary features such 

as the islands of swamp forests in the Upper Pastaza Fan, we inserted these 

features in the INGEMMET map.

5. In the INGEMMET map, the area to the west of the Madre de Dios River and 

north of the Manu River is classified as Pleistocene deposition, similar to the 

recent alluvial deposits south of the Manu River. However, recent geological 

studies of this region indicate that this area is substantially older and divided 

into two formations: (a) Miocene age deposits, analogous to the Pebas 

Formation in northern Perú, and (b) Pliocene age deposits, analogous to the 

Nauta Formation55. The existence of this boundary is further supported by 

data on soils56 and biomass27. We used a combination of Landsat and SRTM 

data to delineate this boundary.

6. We removed eight areas of Pleistocene deposits from the region west of the 

Piedras, and merged them with the surrounding Miocene formation. This 

area is clearly indicated as similar by Espurt et al.55, and this homogeneity is 

readily observed in SRTM elevation data.

7. We used the NatureServe ecological map to add Quaternary fluvial features 

in the Amazonian lowlands.
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8. We incorporated bamboo-dominated forest types using a map provided by 

Carvalho et al.32.

9. We added elevation in 250 meter bands taken from the 90-meter resolution 

SRTM to the entire country, but these were particularly important in the 

mountainous regions.

10. To distinguish between intact forest and deforested or degraded areas, we 

incorporated a map of the fractional cover of photosynthetic vegetation set 

to a minimum canopy cover of 80% at 30-meter spatial resolution, derived 

from the CLASlite mapping of Perú22, 57.

Our final flight-planning map is referred to as the GeoEcoElevation map 

(Figure 19), which partitioned the country into 2375 strata, each of which 

hypothetically could have a different vegetation carbon density “regime”. 

Because there are so many strata, we show the GeoEcoElevation map in 

two parts in Figure 19: (A) the portion delineating the region by the matrix of 

geology, soils and major floristic communities; and (B) elevation. Knowing 

that this is likely a case of extreme over-stratification, at least in terms of 

geographic variation in carbon stocks, we used this stratification to plan flights 

to ensure maximum sampling density with airborne LiDAR in as many unique 

regions as could be determined.

LiDAR Data Acquisition

The LiDAR data were collected using the Carnegie Airborne Observatory-2 

Airborne Taxonomic Mapping System (AToMS; 58), which is carried onboard 

a twin turbopropeller Dornier 228 aircraft. The AToMS LiDAR is a dual laser, 

scanning waveform system capable of firing at 500,000 laser shots per second. 

To cover the maximum area per flight hour, the aircraft was operated at speeds 

of up to 150 knots at an altitude averaging 2000 m above ground level. The 

Figure 19   
(A) Pre-stratification of the airborne 

sampling region using a new 

combination of geological, soil, and 

floristic compositional maps. (B) 

Topography of the airborne sampling 

region from NASA Shuttle Radar 

Topography Mission (SRTM) data.
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LiDAR settings were configured to achieve an average on-the-ground laser 

spot spacing of 4 shots m-2, peaking at 8 shots m-2 in areas of flightline overlap.

Airborne LiDAR sampling was carried out using 100 x 100 km grid cells overlaid 

on the GeoEcoElevation map. For this study, we sought to sample at least 2% 

(200 km2) of each grid cell, with the additional goal of sampling at least 2% 

of the weighted contribution each GeoEcoElevation class to each grid cell. 

Past work has shown that 1% coverage per vegetation type yields robust and 

stable statistical distributions for landscapes of about 500 ha or larger27. A total 

of 6,761,624 ha of LiDAR data were collected throughout the country in an 

extensive sampling pattern shown in Figure 20A. The LiDAR sampling density 

achieved by GeoEcoElevation class averaged 6.47% or 655.8 km2 per grid 

cell (Figure 20B). Some grid cells to the far edges of the mapping area were 

sampled less, with the lowest forest cover amounting to 179.2 km2 (1.8%) of a 

grid cell along the border with Colombia.

LiDAR-based Canopy Height

Mean top-of-canopy height (TCH) was calculated for each hectare of LiDAR 

coverage (n = 6,761,624). To create this data layer, laser range measurements 

from the LiDAR were combined with embedded high resolution Global 

Positioning System-Inertial Measurement Unit (GPS-IMU) data to determine 

the 3-D locations of laser returns, producing a ‘cloud’ of LiDAR data. The 

resulting LiDAR data cloud consisted of a very large number of precisely 

georeferenced point elevation measurements (n = ~278 trillion), where 

elevation is relative to a reference ellipsoid (WGS 1984).

These LiDAR data points were processed to identify which laser pulses 

penetrated the canopy volume and reached the ground surface, from which a 

high-resolution digital terrain model (DTM) was developed. This was achieved 

Figure 20 

(A) Airborne Light Detection and 

Ranging (LiDAR) from the Carnegie 

Airborne Observatory is used to sample 

the region as shown in red lines. Total 

LiDAR observation coverage for this 

study was 6.7 million hectares. (B) 

Percentage coverage of each 100 x 100 

km sampling grid cell. Previous studies 

indicate that over-sampling occurs at 1% 

LiDAR coverage, thus we consider this a 

“massive” sampling of the region.
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using a 10 m x 10 m filter kernel throughout the LiDAR coverage, and the 

lowest elevation in each kernel was deemed a possible ground detection. 

These filtered points were then evaluated by fitting a horizontal plane through 

each point. If the closest unclassified point was < 5.5o and < 1.5 m higher in 

elevation, the pre-filtered point was finalized as a ground-classified surface 

point. This process was repeated until all potential ground points within the 

LiDAR coverage were evaluated. A digital surface model (DSM), which is 

essentially the top-most surface (e.g., canopies, buildings, exposed ground), 

was also generated based on interpolations of all first-return points at 1.0 m 

spatial resolution. By combining the DTM and DSM in a tightly matched pair 

of data layers, the vertical difference between them yielded a high-accuracy 

model of top-of-canopy height (TCH) at 1.1 m spatial resolution throughout 

the 6,761,624 ha LiDAR sampling coverage. Previous validation studies of 

this CAO LiDAR TCH estimation approach has demonstrated it to be highly 

accurate in a wide range of forests including extremely densely foliated, tall 

tropical forests exceeding 60 m in height and leaf area index (LAI) levels59, 60. 

The 1.1-m TCH data were then averaged to one-hectare resolution, which 

further decreases uncertainty in derived mean top-of-canopy canopy height61.

Upscaling LiDAR to a Full Map Coverage

Scaling up a large volume of LiDAR TCH data to full map coverage can be 

accomplished with a variety of techniques, one of which is applying LiDAR-

derived statistics of canopy height to an environmental stratification map 

similar to our GeoEcoElevation map used for initial flight planning. Often 

stratification maps are based on a priori knowledge of vegetation type and/or 

abiotic factors such as soils, elevation, and climate. This “paint by numbers” 

stratified sampling approach is often used with plot-based forest inventory 

data to assign field-based estimates to different stratification classes62-64. 

Stratification has also been used with airborne LiDAR in nearly the same type of 

approach27.

The problem with stratification is that it is overly dependent upon a 
priori knowledge of the factors that may or may not drive variation in the 

ecological metric of interest — aboveground carbon density in this case. In 

an environmentally complicated region like Perú, with ecosystems ranging 

from cold highland deserts to humid submontane assemblages to vast 

lowland forests on varying geologies, we likely cannot stratify well enough 

to develop confidence in bridging the scale gap from LiDAR or field plots to 

full geographic coverages. Moreover, because extremely large geographies 

contain exceedingly remote habitats and highly variable cloud densities, 

neither LiDAR datasets nor field inventory plots can be placed throughout 

them in a random or systematically-aligned design65. This renders typical 

spatial methods for scaling, such as averaging or kriging14, prone to extremely 

large errors. As a result, maps based on stratification or simple spatial 

extrapolation are unreliable, and they cannot be used to properly generate 

spatially-explicit maps of uncertainty, which is paramount to understanding 

the stocks, gains and losses of carbon from a large, heterogeneous region 

such as the Peruvian Andes or the Amazon basin.

To meet this challenge, machine learning algorithms have been developed and 

applied to spatially-discontinuous datasets, like field plots and LiDAR sampling, 

in order to develop spatially-explicit estimates of vegetation properties based 
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on spatially-contiguous environmental variables such as topography, geologic 

substrate and long-term climate maps. In this context, the Random Forest 

Machine Learning (RFML) algorithm66, has been used in global tropical forest 

carbon mapping2, as well as in national, sub-national, and down-scaled 

global carbon mapping42, 49. RFML fits multiple decision trees to input data 

(e.g. spatially-coincident environmental datasets) using a random subset of 

the input variables for each tree constructed for a given response variable 

(e.g., LiDAR TCH samples). The modal value of the calculated decision trees 

is used to create an “ensemble” tree that is used for prediction (e.g. spatially-

contiguous TCH). RFML is non-parametric, insensitive to data skew, and robust 

to a high number of variable inputs67. Recently, a comprehensive comparison 

of RFML to the traditional stratification-based approach for upscaling LiDAR 

samples has demonstrated the RFML approach in a 16 million ha portion of 

lowland Amazonia48. However, that study also suggested that spatial context 

plays a major role in determining how well RFML can scale from local samples 

to full coverage, particularly with respect to strong gradients in environmental 

factors. In the case of the Andes-to-Amazon, or Perú as a whole, the region 

contains enormous variation in most abiotic factors including elevation, slope, 

aspect, geologic substrate and soils, floristics, and climate. Thus, RFML cannot 

perform well unless it has a mechanism to accommodate numerous and rapid 

spatial changes in environmental conditions.

To address this issue, we developed a new version of RFML based on a moving 

tile technique that ingests the airborne LiDAR data in local models (Figure 21). 

These tiles are then mosaicked together to form large, contiguous, national-

scale mapping products. Specifically, we created hundreds of RFML models by 

dividing the LiDAR and environmental data into a system of geographic tiles, 

each covering 200 x 200 km per tile. In addition, we ran the models on these 
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New geostatistical modeling approach 

based on the Random Forest Machine 

Learning (RFML) algorithm. The country 

of Perú is gridded into 200 x 200 

km cells. In each cell, a diverse set 

of compiled satellite predictor maps 

(Figure 22) are precisely co-aligned with 

airborne LiDAR samples. Up to 60,000 

hectares of LiDAR data are randomly 

selected within a grid, and the RFML 

method is used to develop a prediction 

of LiDAR-based top-of-canopy height 

(TCH). This procedure is repeated ten 

times for each grid cell, with random 

selection of the input LiDAR data. An 

independent subset of LiDAR data are 

held back from the analysis of each grid 

cell to provide validation of the modeling 

results. This provides an estimate of the 

uncertainty in each grid cell.



47THE HIGH-RESOLUTION CARBON GEOGRAPHY OF PERÚ

tiles with an overlap of 50 km on each side, for a total coverage of 300 x 300 

km per tile. In each tile, up to 60,000 1-ha LiDAR measurements of average 

TCH were randomly selected from all possible LiDAR 1-ha TCH values in the 

tile. The remaining unselected LiDAR data were used later for validation of the 

RFML modeling approach, described later.

The environmental variables used in each of the tiled RFML models were 

taken from co-aligned predictor spatial datasets (Figure 22). These include 

the fractional cover of photosynthetic vegetation (PV), non-photosynthetic 

vegetation (NPV), and bare substrate (Bare) derived from a national-scale 

mapping of Perú using the CLASlite approach with a mosaic of Landsat satellite 

imagery22. Each fractional cover map quantitatively indicates the percent 

cover of each surface material in every 30-m Landsat pixel, and as a result, 

the maps of PV, NPV and Bare substrate are highly sensitive to spatial variation 

in canopy gap fraction, openness and roughness, as described in previous 

Figure 22   
Geospatial datasets used in the Random 

Forest Machine Learning (RFML) 

algorithm to develop relationships 

between airborne LiDAR samples of 

top-of-canopy height (TCH; first image 

panel) and satellite-derived, continuous 

fields of fractional canopy cover (PV, 

NPV, Bare), topographic variables 

(elevation, slope, aspect, relative 

elevation above water body), average 

insolation at four points in the year, and 

cloudiness.
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studies (e.g., 24, 37). The fractional cover maps were computed from a mosaic of 

cloud-free imagery using the compositing method presented in Asner et al.42, 

with an additional cross-image brightness normalization53. An additional set 

of environmental variables was derived from NASA Shuttle Radar Topography 

Mission (SRTM) at 90 m resolution: elevation, slope and aspect (Figure 22). A 

relative elevation model (REM) was also developed by calculating the height 

of the ground above nearest water body30, thus providing a spatial proxy for 

vegetation-related water resources. We included multiple potential incoming 

solar insolation models using SRTM elevation data in the SAGA GIS Potential 

Insolation module68. These insolation layers (units of kWhm-2) were created by 

modeling total insolation (direct and diffuse) for the days of the equinoxes and 

solstices (21st of Mar, Jun, Sept, and Dec). Additionally, we included long-term 

(2000-2010) cloudiness data derived from the NASA Moderate Resolution 

Imaging Spectroradiometer (MODIS). Cloudiness is based on the number of 

times a MODIS pixel was identified as being affected by clouds in the Quality 

Assurance (QA) flags of the 8-day reflectance product69. The QA flags used in 

the compilation included the following: Pixel Adjacent to Cloud, Internal Cloud 

Algorithm, Cirrus Detected, Cloud Shadow and MOD35 Cloud. The number of 

flags that were set to “on” for each pixel were added and averaged to yield a 

percent cloudiness per pixel. All environmental predictor maps were resampled 

to one-hectare resolution, co-aligned, and combined into a stack of predictor 

variables covering the entire country of Perú.

The predictor maps and the LiDAR one-hectare TCH samples were run 

through the tile-based RFML models to create regression trees (Figure 1). 

Because the process was carried out on individual 300 x 300 km tiles, some 

discontinuities along the edges of each tile were observed. A mosaicking 

methodology was therefore developed to adjust the data in the overlap area 

of each tile in the mosaic. To accomplish this goal, a central tile was used as 

the start of the national-scale mosaic, and adjacent overlapping tiles were 

added one by one along the edges of the central tile. Each new tile added 

to the mosaic was adjusted as a weighted average of each pixel based on its 

proximity to the edge of the tile. For example, a one-hectare pixel on the very 

edge of a 300 x 300 km tile would be weighted more with the value of the 

overlapping pixel of its neighbor tile. Similarly, a pixel close to the center of its 

tile, but still in the overlap area, would be weighted more with the tile center to 

which it is closest.

To further increase the robustness of this tile-based RFML approach, we ran 

ten iterations for each tile, with each iteration randomly selecting a different 

set of up to 60,000 one-hectare LiDAR TCH observations. Additionally, in each 

tile RFML run, we successively shifted the extent of the tile by 10% (20 km) in 

the East-West and North-South directions. Each of these ten iterations formed 

a separate mosaic of the mapped (upscaled) TCH throughout Perú. The ten 

individual, national-scale mosaics were then averaged to produce a single 

national-scale map of TCH at one-hectare resolution, with a corresponding 

standard deviation map generated from the ten individual RFML modeling runs. 

The standard deviation map is an indicator of how uncertain predicted TCH 

is in each hectare of Perú based on using different sets of direct LiDAR TCH 

observations throughout the tiling system.

We left out 10.5% (536,874 ha) of the LiDAR data from the RFML models, 

randomly distributed throughout the entire LiDAR coverage. We used these 

data to validate the upscaled TCH map, which indicated a R2 = 0.78 and a root 
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mean squared error (RMSE) of 3.50 m 

(Figure 23A). In addition, we analyzed 

our relative error in mapped TCH as 

a percentage RMSE against LiDAR-

measured canopy height (Figure 23B). 

This indicated large relative errors of 

more than 60% on short (low biomass) 

vegetation of less than 5 m height, and 

decreasing relative error of less than 20% 

on higher biomass vegetation of 15 m 

or taller. For the purposes of ecological 

analysis or carbon accounting, these 

errors are quite low, and are heightened 

only in smaller canopies that often 

represent very low-biomass shrublands 

or rapidly regrowing successional 

vegetation associated with agricultural 

systems that are not large aboveground 

carbon stores. In contrast, our errors 

are demonstrably low for tall forest 

ecosystems where the overwhelming 

majority of aboveground carbon is 

stored.

Calibrating Mapped TCH to ACD

Aboveground carbon density (ACD) was estimated from the mapped TCH 

data following the approach of plot-aggregate allometric scaling43, 44. A highly 

precise and accurate link between TCH and field estimates of ACD can be 

made by applying regional plot-aggregated estimates of vegetation wood 

density and diameter-to-height relationships. To develop this TCH-to-ACD 

calibration for Andean and Amazonian forests, and other vegetation types 

throughout the region, a permanent inventory plot network was established 

in three latitudinal belts covering northern, central and southern Perú. The 

network includes 272 plots comprised of 262 0.3-hectare plots, and an 

additional 10 one-hectare plots as shown in Figure 24 (next page). The plot 

network is arranged in a nested design of 5-30 individual plots in 13 regionally 

distributed clusters to capture landscape-scale heterogeneity in carbon stocks 

across geological, soil, topographic and floristic compositional conditions. The 

plots include major forest types in lowland Amazonia including white sand, 

clay terrace, alluvial floodplain, swamp, Mauritia palm and bamboo-dominated 

ecosystems. Additionally, the plot network incorporates an extensive sampling 

of submontane and montane dry to wet forests, woodlands and shrublands up 

to treeline at multiple altitudes and latitudes. Finally, the plot network includes 

coverage of both primary and secondary forests, selectively logged forests, 

Brazil-nut concession forests, and highly degraded to deforested lands.

We estimated ACD in each field plot using allometric models. We first 

accounted for dead trees and non-tree growth forms, such as palms, bamboo, 

and lianas, by using growth-form-specific allometric models27. For palms 

and dead trees we used models incorporating height measured using laser 

range finders. For all other individuals, we used a new, generalized allometric 
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Figure 23   
(A) Validation of top-of-canopy height 

(TCH) modeled at the national scale 

using the Random Forest Machine 

Learning (RFML) approach and direct 

measurements of TCH from airborne 

LiDAR. (B) Decline in uncertainty of 

RFML-based TCH estimates with 

increasing TCH. This result is critically 

important since the majority of 

aboveground carbon stock is associated 

with vegetation heights of 15 meters or 

more.
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model from Chave et al.18, which in addition to diameter, requires inputs 

of wood density and height. We identified 98.7% of living stems to genus, 

and obtained a genera-specific wood density estimate from a global wood 

density database for 96.4% of living stems. We accounted for height variation 

using a combination of direct measurements (with either laser range finders 

or clinometers) and diameter-based estimation. We measured the height of 

the three largest-diameter trees in each plot (e.g., those with the greatest 

importance to carbon estimation) as well as seven or more additional trees in 

each plot spanning a range of diameters. These tree height data were used in 

two ways: (a) measured trees retained their measured heights for input into the 

Chave et al.18 allometric model, and (b) more than 10,400 tree measurements 

were used for the creation of a diameter-to-height model that was used to 

estimate the height of all other trees. We multiplied all dry biomass estimates 

by 0.48 to calculate ACD

We used maximum likelihood analysis to fit a power-law model between 

field-estimated ACD and TCH. The fit was performed on the un-transformed 

TCH and ACD values using a non-arithmetic error term to account for 

heteroskedasticity; this method is analogous to fitting a linear model to 

Figure 24 

Regional distribution and density of 

Carnegie permanent field plot network 

in Perú. Circle locations indicate the 

centroid of each cluster of inventory 

plots; Circle colors indicate general 

forest type and condition; Elevation 

map indicates the partitioning of plots 

in lowland (blue-green), submontane 

(yellow) and montane (red) conditions.

Carnegie Institution 
Permanent Plot Network

> 50 plots 

25-50 plots 

10-24 plots 

5-10 plots 

Primary, palm, & bamboo forests 

Selectively logged forests 

Secondary forests & mixed forest-agricultural 
systems 
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the log-transformed TCH and ACD data, but avoids the need for back-

transformation70. In addition, a recently identified change in wood density with 

elevation was incorporated into the TCH-to-ACD calibration using plots along 

an Andean-Amazon elevation gradient71, thereby establishing the regression 

slope of a linear relationship between wood density and elevation. This 

slope was found to be 0.00005 mg cm-3 m-1 of elevation gain above 400 m 

elevation. The adjustment was applied to plots of elevations above 400 m:

 WD
adj

 = WD
orig

 + ((ELEV
site

 - 400) * 0.00005) (i)

Incorporating this adjustment for the elevation-dependence of wood density, 

the average increase in ACD at 1-ha resolution was 5.0 Mg ha-1 or 5.24%. The 

resulting relationship between TCH and ACD is shown in Figure 25, with an 

RMSE = 27.4 Mg C ha-1 and an R2 = 0.82. We view this accuracy and precision 

as excellent given the extreme breadth of vegetation structural, floristic and 

land-use variation incorporated in our permanent plot network (Figure 25). The 

final calibration equation relating top-of-canopy height (TCH) to aboveground 

carbon density (ACD) for Andean and Amazonian forests is:

 ACD = 0.8245 x TCH1.573 (2)

This equation was applied to the Perú-wide TCH map generated from the 

Random Forest modeling.

Figure 25   
Calibration of airborne LiDAR-based 

measurements of top-of-canopy height 

(TCH) against field-based estimates of 

aboveground carbon density (ACD) in 

lowland, submontane and montane 

vegetation throughout Perú.
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Validation of Mapped Carbon Densities

To validate the accuracy of our final carbon map, we held back field-based 

ACD estimates from 43 plots spread throughout the permanent plot network 

coverage. In addition, we used the eight RAINFOR plots spread throughout 

lowland Amazonia72 and six sub-montane and montane plots73 available in 

the literature. These field plot-based estimates of ACD were regressed against 

one-hectare mapped estimates from the RFML modeling. The results of this 

validation are shown in Figure 4.
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Figure S1   
Map of aboveground carbon density 

(ACD) for the country of Perú, with 

annotations (1) through (8) as discussed 

in the main text on page 13.
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Figure S2   
Zoom images of aboveground carbon density (ACD) to highlight natural 

sources of extreme variation, such as (A) Amazon river floodplain 

dynamics; (B) Prevalence of bamboo in Southern Peruvian Amazon 

forests; and (C) Dissipation of carbon stocks toward treeline in the Andes.
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Figure S3   
Zoom images of aboveground carbon density (ACD) to highlight human-

dominated sources of variation, such as (A) Deforestation and forest 

degradation around the city of Puerto Maldonado in Madre de Dios; (B) 

Deforestation along the Iquitos-Nauta road in Loreto; and (C) Massive 

areas of deforestation and land conversion outside of the city of Pucallpa 

in Ucayali.
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Appendix Table 1 
Codes and descriptors of geological-ecological classes used as input 

to the development of the “GeoEcoElevation” map (Figure 19) for 

airborne LiDAR flight planning. This table is intentionally presented in 

Spanish to most closely match the Peruvian government’s Geological 

Map of Peru nomenclature.

Geo-Eco Code Descriptor

Ci-c Carbonifero inferior continental

Ci-c|Bamboo Carbonifero inferior continental|Bamboo

CsP-m Carbonifero superior-Permico

CsP-m|Bamboo Carbonifero superior-Permico|Bamboo

CsP-v Carbofinero sup.Permico|volc-sed.

D-m Devonico|marino.

D-m|Bamboo Devonico|marino.|Bamboo

Dc-mzg/gr Devonico|Plutones Eohercinicos

Dc-to/gd Plutones Eohercinicos

Domos Domos

E-ms Cambrico|marino-sedimentario.

Ji-vs Jurasico inferior|volc-sedimentario.

Jm-m Jurasico medio| marino.

Js-c Jurasico superior continental.

Js-m Jurasico sup.marino

Js-to/gd/di Plutones|Cord. del Condor

JsKi-mc Jurasico sup.-Cretaceo inf.marino-cont.

JsKi-vs Jurasico sup.-cretaceo inf.volc-sed.

Ki-c Cretaceo inferior continental

Ki-c|Bamboo Cretaceo inferior continental|Bamboo

Ki-m Cretaceo Inf.Marino.

Ki-mc Crteaceo inf.Marino|Continental

Ki-mc|Bamboo Crteaceo inf.Marino|Continental|Bamboo

Kis-m Cretaceo inf.sup.Marino.

Kis-m|Bamboo Cretaceo inf.sup.Marino.|Bamboo

KP-to/gd Cretaceo Paleg.ton/gd.

Ks-c Cretacio superior continental.

Ks-c|Bamboo Cretacio superior continental.|Bamboo

Geo-Eco Code Descriptor

Ks-mc Cretaceo Sup.marino continental

KsP-c Cretacio sup. Paleogeno| continental.

Lagunas Lagunas.

N-an/ri Neogeno|andesita- riolitia

N-f Neogeno

N-gd/to Neogeno|granodirita-tonalita.

New01 Pleistocene Alluvial Terrace

New02 Upper Pastaza Fan

Nm-c Neogeno mioceno-continental

Nm-v Neogeno mioceno-volcanico

Nm-vs Neogeno mioceno|volc-sedimentario.

Nmp-c Neogeno mioceno-continental.

Nmp-c|Bamboo Neogeno mioceno-continental.|Bamboo

Nmp-v Neogeno mioceno plioceno-volcanico.

Nmp-vs Neogeno mioceno plioceno-volc|sedimentar

Np-v Neogeno plioceno-volcanico

Np-vs Neogeno plioceno-volc|sedimentario.

NQ-c Neogeno Cuaternario-continental.

NQ-c|Bamboo Neogeno Cuaternario-continental.|Bamboo

NQ-v Neogeno Cuaternario-volcanico.

O-ms Ordovicico-metasedimento

P-an/ri Cuerpos Subvolcanicos

P-c Paleoceno continental

P-c|Bamboo Paleoceno continental|Bamboo

P-to/gd Tonalitas y granodioritas paleogenas

Pali-ms Metased. del Paleozoico

Pe-m Paleogeno eoceno|marino

Pe-vs Paleogeno eoceno|volcanico-sedimentario.

PeA-e/gn Precambrico

PeA-gn Precambrico neoproterozoico|gneis.

Pi-gd/gr Paleozoico inf.granod-granito.

Pis-mc Permico

Pis-mc|Bamboo Permico|Bamboo

PN-c Paleogeno-Neogeno|Continental

PN-c|Bamboo Paleogeno-Neogeno|Continental|Bamboo

Figure S5  
Uncertainty of aboveground carbon 

density (ACD) mapped at the national 

scale expressed as root mean squared 

error (RMSE) of LiDAR-estimated ACD.
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Geo-Eco Code Descriptor

PN-gd/to Batolito de Abancay

PN-vs Paleogeno Neogeno|Volc.Sed.

Po-m Paleogeno oligoceno mioceno

Pp-c Paleogeno-Paleoceno continental.

Pp-vs Paleogeno Paleoceno|Volc.Sed.

Ps-c Permico superior continental.

PT-mzg/gr Plutones Tardihercinicos

PT-to/gd Permico|Plutones Tardihercinicos

Qh-c Cuaternario holoceno-continental.

Qh-c|Bamboo Cuaternario holoceno-continental.|Bamboo

Qpl-c Cuaternario pleistoceno continental

Qplh-v Cuaternario|plioceno|holoceno|volc.

SD-ms Silurico-Devonico|metasedimento

TsJi-m TriasicoSup|Jurasico inf.marino

DF-100 Areas Antropicas

100|Bamboo Areas Antropicas|Bamboo

DF-99 Cuerpos de Agua

CES408.523
Bosque siempreverde de la penillanura del oeste de 
la Amazonia

CES408.523| 
Bamboo

Bosque siempreverde de la penillanura del oeste de la 
Amazonia|Bamboo

CES408.526
Bosque aluvial de aguas negras estancadas del sur de 
la Amazonia

CES408.526| 
Bamboo

Bosque aluvial de aguas negras estancadas del sur de 
la Amazonia|Bamboo

CES408.528
Bosque de arroyos de aguas claras del suroeste de la 
Amazonia

CES408.531
Bosque inundable de la llanura aluvial de rios de 
aguas blancas del suroeste de Zona de Reservada

CES408.531| 
Bamboo

Bosque inundable de la llanura aluvial de rios de 
aguas blancas del suroeste de Zona de Reservada

CES408.532
Bosque inundable de la llanura aluvial de rios de 
aguas blancas del oeste de la

CES408.535
Bosque inundable y vegetacion riparia de aguas 
negras del suroeste de la Amazonia

CES408.536
Bosque inundable y vegetacion riparia de aguas 
negras del oeste de la Amazonia

CES408.538
Bosque pantanoso de palmas de la llanura aluvial del 
oeste de la Amazonia

CES408.543
Bosque siempreverde subandino del suroeste de la 
Amazonia

CES408.543| 
Bamboo

Bosque siempreverde subandino del suroeste de la 
Amazonia|Bamboo

CES408.544
Bosque siempreverde estacional de la penillanura del 
suroeste de la Amazonia

CES408.544| 
Bamboo

Bosque siempreverde estacional de la penillanura del 
suroeste de la Amazonia|Bamboo

CES408.545
Bosque siempreverde estacional subandino del sur-
oeste de la Amazonia

CES408.546
Bosque azonal semideciduo de colinas del oeste de 
la Amazonia

CES408.548 Bosque de serranias aisladas del oeste de la Amazonia

CES408.549 Bosque con Bambu del suroeste de la Amazonia

CES408.549| 
Bamboo

Bosque con Bambu del suroeste de la Amazo-
nia|Bamboo

CES408.550
Complejo de vegetacion sucesional riparia de aguas 
blancas de la Amazonia

Geo-Eco Code Descriptor

CES408.550| 
Bamboo

Complejo de vegetacion sucesional riparia de aguas 
blancas de la Amazonia|Bamboo

CES408.552
Herbazal pantanoso de la llanura aluvial de la alta 
Amazonia

CES408.560
Sabanas arboladas y arbustivas de la alta Amazonia 
sobre suelos anegables

CES408.562
Vegetacion escler?fila de arenas blancas del oeste de 
la Amazonia

CES408.565
Bosque siempreverde subandino del oeste de la 
Amazonia

CES408.569
Bosque pantanoso de la llanura aluvial del oeste de 
la Amazonia

CES408.569| 
Bamboo

Bosque pantanoso de la llanura aluvial del oeste de la 
Amazonia|Bamboo

CES408.570 Bosque del piedemonte del suroeste de la Amazonia

CES408.570| 
Bamboo

Bosque del piedemonte del suroeste de la Amazo-
nia|Bamboo

CES408.571
Bosque inundable y vegetacion riparia de aguas 
mixtas de la Amazonia

CES408.572 Bosque del piedemonte del oeste de la Amazonia

CES408.573
Bosque pantanoso de palmas de la llanura aluvial del 
sur de la Amazonia

CES408.573| 
Bamboo

Bosque pantanoso de palmas de la llanura aluvial del 
sur de la Amazonia|Bamboo

CES408.574
Bosque inundable de la llanura aluvial de rios de 
aguas negras del centro-sur de

CES408.576
Bosque de tierra firme depresionada del sur de la 
Amazonia

CES408.578
Bosque inundado por aguas blancas estancadas del 
suroeste de la Amazonia

CES409.039
Arbustal y herbazal sobre mesetas subandinas ori-
entales

CES409.043 Bosque altimontano pluvial de Yungas

CES409.044 Bosque altimontano pluviestacional de Yungas

CES409.048 Bosque y palmar basimontano pluvial de Yungas

CES409.050 Bosque montano pluvial de Yungas

CES409.053
Bosque basimontano pluviestacional subh·medo de 
Yungas del  sur

CES409.054
Bosque basimontano pluviestacional h·medo de 
Yungas

CES409.056 Bosque basimontano xerico de Yungas del sur

CES409.057 Matorral xerico interandino de Yungas

CES409.058
Pajonal arbustivo altoandino y altimontano pluvial de 
Yungas

CES409.059
Pajonal arbustivo altoandino y altimontano pluviesta-
cional de Yungas

CES409.061 Palmar pantanoso subandino de Yungas

CES409.062 Sabana arbolada montana y basimontana de Yungas

CES409.075
Bosque y arbustal montano xerico interandino de 
Yungas

CES409.079
Bosque y arbustal basimontano xerico de Yungas del 
norte

CES409.914
Bosque pluvial sobre mesetas de la Cordillera del 
Condor

CES409.921 Bosque montano pluviestacional subh·medo de Yungas

Co01Amazonia Complejo de sabanas del sur de la Amazonia

Co02Amazonia
Complejo de bosques sucesionales inundables de 
aguas blancas de la Amazonia

Co02Andes Complejo submontano seco de Yungas del norte
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