80 research outputs found

    Molecular tests for human papillomavirus (HPV), Chlamydia trachomatis and Neisseria gonorrhoeae in liquid-based cytology specimen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory detection of Human papillomavirus (HPV), <it>Chlamydia trachomatis </it>and <it>Neisseria gonorrhoeae </it>in liquid-based cervicovaginal cytology specimens is now based on identification of the DNA sequences unique to these infectious agents. However, current commercial test kits rely on nucleotide probe hybridization to determine DNA sequences, which may lead to diagnostic errors due to cross-reactivity. The aim of this study was to find a practical approach to perform automated Sanger DNA sequencing in clinical laboratories for validation of the DNA tests for these three infectious agents.</p> <p>Methods</p> <p>A crude proteinase K digestate of 5% of the cells collected in a liquid-based cervicovaginal cytology specimen was used for the detection of DNA molecules specific for HPV, <it>C trachomatis </it>and <it>N gonorrhoeae</it>, and for preparation of materials suitable for direct automated DNA sequencing. Several sets of commercially available polymerase chain reaction (PCR) primers were used to prepare nested PCR amplicons for direct DNA sequencing.</p> <p>Results</p> <p>Some variants of HPV-16 and HPV-31 were found to share an at least 34-base long sequence homology downstream of the GP5+ binding site, and all HPV-6 and HPV-11 variants shared an upstream 34-base sequence including part of the GP5+ primer. Accurate HPV genotyping frequently required more than 34-bases for sequence alignments to distinguish some of the HPV genotype variants with closely related sequences in this L1 gene hypervariable region. Using the automated Sanger DNA sequencing method for parallel comparative studies on split samples and to retest the residues of samples previously tested positive for <it>C trachomatis </it>and/or for <it>N gonorrhoeae</it>, we also found false-negative and false-positive results as reported by two commercial nucleic acid test kits.</p> <p>Conclusion</p> <p>Identification of a signature DNA sequence by the automated Sanger method is useful for validation of HPV genotyping and for molecular testing of <it>C trachomatis </it>and <it>N gonorrhoeae </it>in liquid-based cervicovaginal Papanicolaou (Pap) cytology specimens for clinical laboratories with experience in molecular biology to increase the specificity of these DNA-based tests. However, even a highly specific test for high-risk HPV genotyping may have unacceptably low positive predictive values for precancer lesion in populations with a low cervical cancer prevalence rate.</p

    DEVELOPMENT AND VALIDATION OF A HEAD-NECK FINITE ELEMENT MODEL FOR INJURY ANALYSIS

    Get PDF
    In this study, the digitized geometrical data of the embalmed skull and vertebrae (C1-C7) of a 68 year-old male cadaver were processed to develop a comprehensive, geometrically accurate, nonlinear CO-C7 FE model. The biomechanical response of human neck under near vertex drop impact conditions were investigated and compared with the published experimental data. The results show that the predicted resultant head impact force history and corresponding motions of each motion segment all agree well with pUblished data. The stress variation histories in the neck were found to be consistent with the rotational motions of the motion segments under dynamic loading. The current model may offer potential to effectively reflect the behavior of human cervical spine suitable for further biomechanics and traumatic studies

    Presence of tumour capsule on contrast-enhanced CT is associated with improved outcomes of stereotactic body radiation therapy in hepatocellular carcinoma patients

    Get PDF
    Purpose Stereotactic body radiation therapy (SBRT) is a novel local therapy for the treatment of hepatocellular carcinoma (HCC). While effective, there is currently noreliable radiological marker to guide patient selection. In this study, we investigated the prognostic value of capsule appearanceon contrast-enhanced computed tomography (CT) for patients undergoing SBRT. Materials and Methods Between 2006 and 2017, 156 consecutive patients with Child-Pugh score class A/B and HCC ≥5cm that underwent SBRT were retrospectively analysed. Baseline triple-phase CTs of the abdomen were reviewed for the presence of capsule appearances and correlated with objective response rate (ORR), overall survival (OS), and pattern of treatment failure. Results Capsule appearance on CT was present in 83 (53.2%) patients.It was associated with improved ORR by Response Evaluation Criteria in Solid Tumours (RECIST) (60.2% vs 24.7%; p<0.001) andModified Response Evaluation Criteria in Solid Tumours(mRECIST) (ORR 78.3% vs 34.2%; p<0.001). The presence of a capsule was also associated with superior 2-year local control (89.1% vs. 51.4%; p<0.001) and 2-year OS (34.1% vs. 14.8%, p<0.01). Hepatic out-field failure was the dominant mode of progression, which was less common in patients with intact capsule (54.2% vs. 60.3%, p=0.01). Conclusion Capsule appearance on CT could potentially be a non-invasive prognostic marker for selecting HCC patients undergoing SBRT. Larger cohort is warranted to validate our findings

    Early Lyme disease with spirochetemia - diagnosed by DNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A sensitive and analytically specific nucleic acid amplification test (NAAT) is valuable in confirming the diagnosis of early Lyme disease at the stage of spirochetemia.</p> <p>Findings</p> <p>Venous blood drawn from patients with clinical presentations of Lyme disease was tested for the standard 2-tier screen and Western Blot serology assay for Lyme disease, and also by a nested polymerase chain reaction (PCR) for <it>B. burgdorferi </it>sensu lato 16S ribosomal DNA. The PCR amplicon was sequenced for <it>B. burgdorferi </it>genomic DNA validation. A total of 130 patients visiting emergency room (ER) or Walk-in clinic (WALKIN), and 333 patients referred through the private physicians' offices were studied. While 5.4% of the ER/WALKIN patients showed DNA evidence of spirochetemia, none (0%) of the patients referred from private physicians' offices were DNA-positive. In contrast, while 8.4% of the patients referred from private physicians' offices were positive for the 2-tier Lyme serology assay, only 1.5% of the ER/WALKIN patients were positive for this antibody test. The 2-tier serology assay missed 85.7% of the cases of early Lyme disease with spirochetemia. The latter diagnosis was confirmed by DNA sequencing.</p> <p>Conclusion</p> <p>Nested PCR followed by automated DNA sequencing is a valuable supplement to the standard 2-tier antibody assay in the diagnosis of early Lyme disease with spirochetemia. The best time to test for Lyme spirochetemia is when the patients living in the Lyme disease endemic areas develop unexplained symptoms or clinical manifestations that are consistent with Lyme disease early in the course of their illness.</p

    Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice

    Get PDF
    Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3+ T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3+ regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging. © 2016 The Author(s)1761sciescopu

    Routine human papillomavirus genotyping by DNA sequencing in community hospital laboratories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) genotyping is important for following up patients with persistent HPV infection and for evaluation of prevention strategy for the individual patients to be immunized with type-specific HPV vaccines. The aim of this study was to optimize a robust "low-temperature" (LoTemp™) PCR system to streamline the research protocols for HPV DNA nested PCR-amplification followed by genotyping with direct DNA sequencing. The protocol optimization facilitates transferring this molecular technology into clinical laboratory practice. In particular, lowering the temperature by 10°C at each step of thermocycling during <it>in vitro </it>DNA amplification yields more homogeneous PCR products. With this protocol, template purification before enzymatic cycle primer extensions is no longer necessary.</p> <p>Results</p> <p>The HPV genomic DNA extracted from liquid-based alcohol-preserved cervicovaginal cells was first amplified by the consensus MY09/MY11 primer pair followed by nested PCR with GP5+/GP6+ primers. The 150 bp nested PCR products were subjected to direct DNA sequencing. The hypervariable 34–50 bp DNA sequence downstream of the GP5+ primer site was compared to the known HPV DNA sequences stored in the GenBank using on-line BLAST for genotyping. The LoTemp™ ready-to-use PCR polymerase reagents proved to be stable at room temperature for at least 6 weeks. Nested PCR detected 107 isolates of HPV in 513 cervicovaginal clinical samples, all validated by DNA sequencing. HPV-16 was the most prevalent genotype constituting 29 of 107 positive cases (27.2%), followed by HPV-56 (8.5%). For comparison, Digene HC2 test detected 62.6% of the 107 HPV isolates and returned 11 (37.9%) of the 29 HPV-16 positive cases as "positive for high-risk HPV".</p> <p>Conclusion</p> <p>The LoTemp™ ready-to-use PCR polymerase system which allows thermocycling at 85°C for denaturing, 40°C for annealing and 65°C for primer extension can be adapted for target HPV DNA amplification by nested PCR and for preparation of clinical materials for genotyping by direct DNA sequencing. HPV genotyping is performed by on-line BLAST algorithm of a hypervariable L1 region. The DNA sequence is included in each report to the physician for comparison in following up patients with persistent HPV infection, a recognized tumor promoter in cancer induction.</p

    Bioreactor technologies to support liver function in vitro

    Get PDF
    Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.National Institutes of Health (U.S.) (R01 EB010246)National Institutes of Health (U.S.) (P50-GM068762-08)National Institutes of Health (U.S.) (R01-ES015241)National Institutes of Health (U.S.) (P30-ES002109)5UH2TR000496-02National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (CBET-0939511)United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039
    corecore