1,170 research outputs found
Genetic Landscape of Prostate Cancer Conspicuity on Multiparametric Magnetic Resonance Imaging: A Systematic Review and Bioinformatic Analysis
CONTEXT: Multiparametric magnetic resonance imaging (mpMRI) detects most, but not all, clinically significant prostate cancer. The genetic basis of prostate cancer visibility and invisibility on mpMRI remains uncertain. OBJECTIVE: To systematically review the literature on differential gene expression between mpMRI-visible and mpMRI-invisible prostate cancer, and to use bioinformatic analysis to identify enriched processes or cellular components in genes validated in more than one study. EVIDENCE ACQUISITION: We performed a systematic literature search of the Medline, EMBASE, PubMed, and Cochrane databases up to January 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. The primary endpoint was differential genetic features between mpMRI-visible and mpMRI-invisible tumours. Secondary endpoints were explanatory links between gene function and mpMRI conspicuity, and the prognostic value of differential gene enrichment. EVIDENCE SYNTHESIS: We retrieved 445 articles, of which 32 met the criteria for inclusion. Thematic synthesis from the included studies showed that mpMRI-visible cancer tended towards enrichment of molecular features associated with increased disease aggressivity, including phosphatase and tensin homologue (PTEN) loss and higher genomic classifier scores, such as Oncotype and Decipher. Three of the included studies had accompanying publicly available data suitable for further bioinformatic analysis. An over-representation analysis of these datasets revealed increased expression of genes associated with extracellular matrix components in mpMRI-visible tumours. CONCLUSIONS: Prostate cancer that is visible on mpMRI is generally enriched with molecular features of tumour development and aggressivity, including activation of proliferative signalling, DNA damage, and inflammatory processes. Additionally, there appears to be concordant cellular components and biological processes associated with mpMRI conspicuity, as highlighted by bioinformatic analysis of large genetic datasets. PATIENT SUMMARY: Prostate cancer that is detected by magnetic resonance imaging (MRI) tends to have genetic features that are associated with more aggressive disease. This suggests that MRI can be used to assess the likelihood of aggressive prostate cancer, based on tumour visibility
Characterisation of GLUT4 trafficking in HeLa cells: Comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes
Insulin-stimulated glucose transport is a characteristic property of adipocytes and
muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-
containing vesicles from intracellular stores to the cell surface. Fusion of these
vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an
attempt to overcome some of the limitations associated with both primary and
cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4
(HA–GLUT4–GFP) in HeLa cells. Here we report the characterisation of this system
compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of
HA–GLUT4–GFP to the surface of both cell types with similar kinetics using
orthologous trafficking machinery. While the magnitude of the insulin-stimulated
translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a
useful, experimentally tractable, human model system. Here, we exemplify their
utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential
novel regulators of GLUT4 trafficking in human cells
Extending colonic mucosal microbiome analysis - Assessment of colonic lavage as a proxy for endoscopic colonic biopsies
This study was supported through GI Research funds and MRC Grant Ref: MR/M00533X/1 to GH.Peer reviewedPublisher PD
Responses of marine benthic microalgae to elevated CO<inf>2</inf>
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag
Experimental Assessment of the Water Quality Influence on the Phosphorus Uptake of an Invasive Aquatic Plant: Biological Responses throughout Its Phenological Stage
International audienceUnderstanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 mu g.l(-1) P-PO43- and hypertrophic state, 300 mu g.l(-1) P-PO43-) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment
- …