201 research outputs found

    Transcript profiling of serine- and cysteine protease inhibitors in Triticum aestivum varieties with different drought tolerance

    Get PDF
    A high number of protease inhibitors (PI) have been identified in diverse plant species but information about their role in plant stress responses is still fragmentary. Transcript profiling of six published serine and cysteine protease inhibitor sequences in water-deprived plants from four winter wheat (Triticum aestivum) varieties with varying tolerance was performed in order to outline PIs predominantly accumulating under drought. Expression was analyzed by real time RT-qPCR. Considerable transcript accumulation of Bowman-Birk type PI WALI3 (BBPI) was detected in drought stressed leaves suggesting an important regulatory role of BBPI in adjustment of protein metabolism in leaves under dehydration. Serpin transcripts were less represented in water-deprived plants. Transient accumulation of cystatin transcripts revealed organ-specificity. Under drought cystatin and serpin expression in the leaves of the most drought tolerant variety “Katya” tended to preserve relatively stable levels close to the controls. This preliminary data will serve for future detailed study of regulation of proteolysis in winter wheat subjected to unfavorable environmental factors for development of molecular-based strategies for selection of tolerant varieties

    Characterization of Moment of Inertia Variations by Holographic Interferometry

    Get PDF
    Holographic interferometry (HI) is a powerful tool for mapping of surface defects. In conjunction with various stressing techniques [l–4], it offers an NDT tool for the detection of flaws within the volume of materials. The method is advantageous for integrity characterization of components to serve under mechanical stress, where the detailed shape, size and depth of the flaw within the material are of no interest. For most applications, where integrity is tested, the moment of inertia may be used as a measure for classification of the product and for the estimation of its reliability. The presence of volumetric flaws, when the sample is under loading, is expressed in the holographic interferogram. The exterma of the fringe pattern are used for determination of the displacement distribution. The second derivative of the displacement distribution is related to the bending moment and the moment of inertia. The moment of inertia may be further processed to obtain a function free from degrading influence of the specific measuring system employed [5]

    Double down on remote sensing for biodiversity estimation. A biological mindset

    Get PDF
    In the light of unprecedented planetary changes in biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential for informing policy and sustainable development. Biodiversity monitoring is a challenge, especially for large areas such as entire continents. Nowadays, spaceborne and airborne sensors provide information that incorporate wavelengths that cannot be seen nor imagined with the human eye. This is also now accomplished at unprecedented spatial resolutions, defined by the pixel size of images, achieving less than a meter for some satellite images and just millimeters for airborne imagery. Thanks to different modeling techniques, it is now possible to study functional diversity changes over different spatial and temporal scales. At the heart of this unifying framework are the “spectral species”—sets of pixels with a similar spectral signal—and their variability over space. The aim of this paper is to summarize the power of remote sensing for directly estimating plant species diversity, particularly focusing on the spectral species concept

    Scientific maps should reach everyone: The cblindplot R package to let colour blind people visualise spatial patterns

    Get PDF
    Maps represent powerful tools to show the spatial variation of a variable in a straightforward manner. A crucial aspect in map rendering for its interpretation by users is the gamut of colours used for displaying data. One part of this problem is linked to the proportion of the human population that is colour blind and, therefore, highly sensitive to colour palette selection. The aim of this paper is to present the cblindplot R package and its founding function - cblind.plot() - which enables colour blind people to just enter an image in a coding workflow, simply set their colour blind deficiency type, and immediately get as output a colour blind friendly plot. We will first describe in detail colour blind problems, and then show a step by step example of the function being proposed. While examples exist to provide colour blind people with proper colour palettes, in such cases (i) the workflow include a separate import of the image and the application of a set of colour ramp palettes and (ii) albeit being well documented, there are many steps to be done before plotting an image with a colour blind friendly ramp palette. The function described in this paper, on the contrary, allows to (i) automatically call the image inside the function without any initial import step and (ii) explicitly refer to the colour blind deficiency type being experienced, to further automatically apply the proper colour ramp palette

    rasterdiv ‐ an Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back

    Get PDF
    Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow. In this paper, we present a new R package—rasterdiv—to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns. The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms

    Genetic diversity of sugar beet under heat stress and deficit irrigation

    Get PDF
    In the light of climate changes and globalwarming, as well as the rapid expansion in sugar beet (Beta vulgaris L.) cultivation in Egypt, the development of sugar beet varieties with improved tolerance to high temperature and deficit irrigation is of great importance. The objective of this studywas to evaluate sugar beet genotypes under high temperatures and deficit irrigation conditions for further identification and selection of heat and drought tolerant genotypes. In the current study, a panel of 18 sugar beet breeding lines produced at the USDA–ARS–NWISRL, Kimberly, ID, and the commercial sugar beet cultivar Kawimera were evaluated for yield and quality under high temperature. Six promising lines in terms of yield and quality were further evaluated under both high temperature and deficit irrigation for two growing seasons. All lines performed differently under deficit irrigation, indicating a high degree of genetic variability in the evaluated lines. Additionally, yield traits showed negative effect due to deficit irrigation. A significant positive correlation was observed between stress tolerance index (STI), and average root and sugar yields under stressed and non-stressed conditions. A linear relationship between STI and average root and sugar yields indicates that STI is a reliable stress index to select high yielding genotypes under both optimum- and deficit-irrigation conditions. USKPS25 and USC944-6-68 breeding lines are most likely adapted to deficit irrigation and high temperature and suitable to be utilized in the proposed sugar beet breeding programs in Egypt

    Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in <it>in vivo </it>experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their <it>in vitro </it>complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II).</p> <p>Results</p> <p>New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>1</b>) and [Pb(Sal)(NO<sub>3</sub>)] (<b>2</b>), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield <b>1</b>. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex <b>2 </b>consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation.</p> <p>Conclusion</p> <p>The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming.</p

    Quality control of B-lines analysis in stress Echo 2020

    Get PDF
    Background The effectiveness trial “Stress echo (SE) 2020” evaluates novel applications of SE in and beyond coronary artery disease. The core protocol also includes 4-site simplified scan of B-lines by lung ultrasound, useful to assess pulmonary congestion. Purpose To provide web-based upstream quality control and harmonization of B-lines reading criteria. Methods 60 readers (all previously accredited for regional wall motion, 53 B-lines naive) from 52 centers of 16 countries of SE 2020 network read a set of 20 lung ultrasound video-clips selected by the Pisa lab serving as reference standard, after taking an obligatory web-based learning 2-h module ( http://se2020.altervista.org ). Each test clip was scored for B-lines from 0 (black lung, A-lines, no B-lines) to 10 (white lung, coalescing B-lines). The diagnostic gold standard was the concordant assessment of two experienced readers of the Pisa lab. The answer of the reader was considered correct if concordant with reference standard reading ±1 (for instance, reference standard reading of 5 B-lines; correct answer 4, 5, or 6). The a priori determined pass threshold was 18/20 (≄ 90%) with R value (intra-class correlation coefficient) between reference standard and recruiting center) > 0.90. Inter-observer agreement was assessed with intra-class correlation coefficient statistics. Results All 60 readers were successfully accredited: 26 (43%) on first, 24 (40%) on second, and 10 (17%) on third attempt. The average diagnostic accuracy of the 60 accredited readers was 95%, with R value of 0.95 compared to reference standard reading. The 53 B-lines naive scored similarly to the 7 B-lines expert on first attempt (90 versus 95%, p = NS). Compared to the step-1 of quality control for regional wall motion abnormalities, the mean reading time per attempt was shorter (17 ± 3 vs 29 ± 12 min, p < .01), the first attempt success rate was higher (43 vs 28%, p < 0.01), and the drop-out of readers smaller (0 vs 28%, p < .01). Conclusions Web-based learning is highly effective for teaching and harmonizing B-lines reading. Echocardiographers without previous experience with B-lines learn quickly.info:eu-repo/semantics/publishedVersio

    Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine

    Get PDF
    Grapevine is an extremely important crop worldwide. In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress (WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors
    • 

    corecore