757 research outputs found

    Transport in a three-terminal graphene quantum dot in the multi-level regime

    Full text link
    We investigate transport in a three-terminal graphene quantum dot. All nine elements of the conductance matrix have been independently measured. In the Coulomb blockade regime accurate measurements of individual conductance resonances reveal slightly different resonance energies depending on which pair of leads is used for probing. Rapid changes in the tunneling coupling between the leads and the dot due to localized states in the constrictions has been excluded by tuning the difference in resonance energies using in-plane gates which couple preferentially to individual constrictions. The interpretation of the different resonance energies is then based on the presence of a number of levels in the dot with an energy spacing of the order of the measurement temperature. In this multi-level transport regime the three-terminal device offers the opportunity to sense if the individual levels couple with different strengths to the different leads. This in turn gives qualitative insight into the spatial profile of the corresponding quantum dot wave functions.Comment: 12 pages, 6 figure

    Femoral and tibial bone torsions associated with medial femoro-tibial osteoarthritis. Index of cumulative torsions

    Get PDF
    AbstractFrontal plane varus deviation is one of the mechanisms hypothesized to be involved in the pathogenesis of medial compartment osteoarthritis of the knee. But only a few authors have suggested a role for tibial and femoral torsion. In the current study, CT scan was used to measure bone torsion. The torsional morphology of the lower limb was defined by the “index of cumulative torsions” (ICT). The resulting values were compared to the frontal angular deviation data. The effects of tibial and femoral torsion on the position of the lower limb during the stance phase of walking and the consequences for the knee are discussed

    A first approach to model the low-frequency wave activity in the plasmasphere

    Get PDF
    International audienceA comprehensive empirical model of waves is developed in the objective to simulate wave-particle interactions involved in the loss and acceleration of radiation belt electrons. Three years of measured magnetic wave field components from the Plasma Wave Instrument on board the DE-1 satellite are used to model the amplitude spectral density of the magnetic wave field of each type of emission observed in the equatorial regions of the plasmasphere: VLF transmitter emissions, chorus emissions, plasmaspheric hiss emissions and equatorial emissions below ~ 200 Hz. Each model is a function of the wave frequency f , the MLT, L and Mlat parameters, and the Kp values. The performances of the plasmaspheric hiss and chorus models are tested on amplitude spectra recorded on board the OGO-5 and GEOS-1 satellites

    Experimental study of the competition between Kondo and RKKY interactions for Mn spins in a model alloy system

    Full text link
    The quasicrystal Al-Pd-Mn is a model system for an experimental study of the competition between Ruderman-Kittel-Kasuya-Yoshida (RKKY) and Kondo interactions. First, specific of such alloys, only a few Mn atoms carry an effective spin and their concentration x is tunable over several orders of magnitude, even though the Mn amount is almost constant. Second, the characteristic energy scales for the interactions lie in the Kelvin range. Hence we could study the magnetization on both side of these energy scales, covering a range of temperatures [0.1-100 K] and magnetic fields (mu_B H/k_B= 0 to 5 K) for 22 samples and x varying over 2 decades. Using very general Kondo physics arguments, and thus carrying out the data analysis with no preconceived model, we found a very robust and simple result: The magnetization is a sum of a pure Kondo (T_K=3.35K) and a pure RKKY contributions, whatever the moment concentration is and this surprisingly up to the concentration where the RKKY couplings dominate fully and thus cannot be considered as a perturbation.Comment: 18 pages, 18 figure

    Describing ancient horizontal gene transfers at the nucleotide and gene levels by comparative pathogenicity island genometrics

    Get PDF
    Motivation: Lateral gene transfer is a major mechanism contributing to bacterial genome dynamics and pathovar emergence via pathogenicity island (PAI) spreading. However, since few of these genomic exchanges are experimentally reproducible, it is difficult to establish evolutionary scenarios for the successive PAI transmissions between bacterial genera. Methods initially developed at the gene and/or nucleotide level for genomics, i.e. comparisons of concatenated sequences, ortholog frequency, gene order or dinucleotide usage, were combined and applied here to homologous PAIs: we call this approach comparative PAI genometrics. Results: YAPI, a Yersinia PAI, and related islands were compared with measure evolutionary relationships between related modules. Through use of our genometric approach designed for tracking codon usage adaptation and gene phylogeny, an ancient inter-genus PAI transfer was oriented for the first time by characterizing the genomic environment in which the ancestral island emerged and its subsequent transfers to other bacterial genera. Contact: [email protected] Supplementary informatio

    Green, Julien

    Get PDF

    Magnetic frustration in the spinel compounds Ge Co_2 O_4 and Ge Ni_2 O_4

    Full text link
    In both spinel compounds GeCo2_2O4_4 and GeNi2_2O4_4 which order antiferromagnetically (at TN=23.5KT_N = 23.5 K and TN1=12.13KT_{N_1} = 12.13 K, TN2=11.46KT_{N_2} = 11.46 K) with different Curie Weiss temperatures (TCWT_{CW}=80.5 K and -15 K), the usual magnetic frustration criterion f=TCW/TN>>1f=|T_{CW}|/T_N>>1 is not fulfilled. Using neutron powder diffraction and magnetization measurements up to 55 T, both compounds are found with a close magnetic ground state at low temperature and a similar magnetic behavior (but with a different energy scale), even though spin anisotropy and first neighbor exchange interactions are quite different. This magnetic behavior can be understood when considering the main four magnetic exchange interactions. Frustration mechanisms are then enlightened.Comment: submitted to Phys.Rev.B (2006

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling
    corecore