58 research outputs found

    Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases

    Get PDF
    The effect of several nutritional and environmental parameters on growth and amylase production from Rhizopus microsporus var. rhizopodiformis was analysed. This fungus was isolated from soil of the Brazilian “cerrado” and produced high levels of amylolytic activity at 45°C in liquid medium supplemented with starch, sugar cane bagasse, oat meal or cassava flour. Glucose in the culture medium drastically repressed the amylolytic activity. The products of hydrolysis were analysed by thin layer chromatography, and glucose was detected as the main component. The amylolytic activity hydrolysed several substrates, such as amylopectin, amylase, glycogen, pullulan, starch, and maltose. Glucose was always the main end product detected by high-pressure liquid chromatography analysis. These results indicated that the amylolytic activity studied is a glucoamylase, but there were also low levels of α-amylase. As compared to other fungi, R. microsporus var. rhizopodiformis can be considered an efficient producer of thermostable amylases, using raw residues of low cost as substrates. This information is of technological value, considering the importance of amylases for industrial hydrolysis

    Natural products as novel scaffolds for the design of glycogen synthase kinase 3β inhibitors

    Get PDF
    Introduction: The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. Areas covered: In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3β inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. Expert opinion: Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3β inhibitors

    Safety issues in nutraceutical exploitation of Chlorella vulgaris, Arthrospira Platensis and Scenedesmus sp. microalgae

    Get PDF
    Microalgae contain many bioactive compounds, which may be exploited in food and nutraceutical fields. Bisphenol A (BPA) is a contaminant in microalgae that may be released from polymeric plastics. Since it is responsible for toxic effects on humans, the European legislation set the legal BPA limit within foods at 50 µg kg−1 of food weight. In this work, a fast ultrasounds solid-liquid extraction of BPA from commercial microalgal powders of Chlorella vulgaris, Arthrospira Platensis and Scenedesmus sp. was optimized. To increase selectivity, BPA was derivatized by using N,O-bis(trimethylsilyl)trifluoroacetamide/trimethylchlorosilane (BSTFA-TMCS) and it was analysed by GC-MS in selected ion monitoring mode. A design of experiment (DOE) optimization study of the reaction conditions was performed. The analytical method was validated by determining selectivity, linearity (R2= 0.99999 ± 3.3165E-07), precision, accuracy (99.92 ± 9.83E-02 %), recovery (99.65 ± 3.61E-02 %) and sensitivity (LoD= 0.547 ± 9.94E-02 µg kg−1; LoQ= 1.823 ± 3.31E-1 µg kg−1). The overall method proved to be fast, with high recovery and suitable to selectively and sensitively determine the content of BPA, eliminating the interferences from extraction and allowing to control the safety profile of microalgae. Dried microalgae cultivated in a polycarbonate reactor, were found to contain an amount of BPA 6 times exceeding the legal limit

    How neurophysiological measures can be used to enhance the evaluation of remote tower solutions

    Get PDF
    International audienceNew solutions in operational environments are often, among objective measurements, evaluated by using subjective assessment and judgement from experts. Anyhow, it has been demonstrated that subjective measures suffer from poor resolution due to a high intra and inter operator variability. Also, performance measures, if available, could provide just partial information, since an operator could achieve the same performance but experiencing a different workload. In this study we aimed to demonstrate i) the higher resolution of neurophysiological measures in comparison to subjective ones, and ii) how the simultaneous employment of neurophysiological measures and behavioural ones could allow a holistic assessment of operational tools. In this regard, we tested the effectiveness of an EEG-based neurophysiological index (WEEG index) in comparing two different solutions (i.e. Normal and Augmented) in terms of experienced workload. In this regard, 16 professional Air Traffic Controllers (ATCOs) have been asked to perform two operational scenarios. Galvanic Skin Response (GSR) has also been recorded to evaluate the level of arousal (i.e. operator involvement) during the two scenarios execution. NASA-TLX questionnaire has been used to evaluate the perceived workload, and an expert was asked to assess performance achieved by the ATCOs. Finally, reaction times on specific operational events relevant for the assessment of the two solutions, have also been collected. Results highlighted that the Augmented solution induced a local increase in subjects performance (Reaction times). At the same time, this solution induced an increase in the workload experienced by the participants (WEEG). Anyhow, this increase is still acceptable, since it did not negatively impact the performance and has to be intended only as a consequence of the higher engagement of the ATCOs. This behavioural effect is totally in line with physiological results obtained in terms of arousal (GSR), that increased during the scenario with augmentation. Subjective measures (NASA-TLX) did not highlight any significant variation in perceived workload. These results suggest that neurophysiological measure provide additional information than behavioural and subjective ones, even at a level of few seconds, and its employment during the pre-operational activities (e.g. design process) could allow a more holistic and accurate evaluation of new solutions

    An Exploratory Study of Field Failures

    Get PDF
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX

    The Large-Scale Polarization Explorer (LSPE)

    Full text link
    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the polarized foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    A novel xylan degrading β-D-xylosidase: purification and biochemical characterization

    Get PDF
    Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular b-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. b-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 C and 3.0–5.5, respectively.b-xylosidase was stable in acidic pH (3.0–6.0) and 70 C for 1 h. The enzyme was activated by 5 mM MnCl2 (28 %)and MgCl2 (20 %) salts. The b-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-b- D-xylopyranoside, exhibiting apparent Km and Vmax values of 0.66 mM and 39 U (mg protein)-1 respectively, and to a lesser extent p-nitrophenyl-b-D-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources,suggesting a novel b-D-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by b-xylosidase. TLC confirmed the capacity.This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and the Conselho de Desenvolvimento Científico e Tecnológico (CNPq). J. A. J. and M. L. T. M. P are Research Fellows of CNPq. M. M. was a recipient of a FAPESP fellowship and this work is part of her Doctoral Thesis. It is also part of the project SISBIOTA CNPq: 563260/2010-6 and FAPESP: 2010/52322-3

    MAORY for ELT: preliminary design overview

    Get PDF
    MAORY is one of the approved instruments for the European Extremely Large Telescope. It is an adaptive optics module, enabling high-angular resolution observations in the near infrared by real-time compensation of the wavefront distortions due to atmospheric turbulence and other disturbances such as wind action on the telescope. An overview of the instrument design is given in this paper
    corecore