3,588 research outputs found

    On the use of the Fourier Transform to determine the projected rotational velocity of line-profile variable B stars

    Get PDF
    The Fourier Transform method is a popular tool to derive the rotational velocities of stars from their spectral line profiles. However, its domain of validity does not include line-profile variables with time-dependent profiles. We investigate the performance of the method for such cases, by interpreting the line-profile variations of spotted B stars, and of pulsating B tars, as if their spectral lines were caused by uniform surface rotation along with macroturbulence. We perform time-series analysis and harmonic least-squares fitting of various line diagnostics and of the outcome of several implementations of the Fourier Transform method. We find that the projected rotational velocities derived from the Fourier Transform vary appreciably during the pulsation cycle whenever the pulsational and rotational velocity fields are of similar magnitude. The macroturbulent velocities derived while ignoring the pulsations can vary with tens of km/s during the pulsation cycle. The temporal behaviour of the deduced rotational and macroturbulent velocities are in antiphase with each other. The rotational velocity is in phase with the second moment of the line profiles. The application of the Fourier method to stars with considerable pulsational line broadening may lead to an appreciable spread in the values of the rotation velocity, and, by implication, of the deduced value of the macroturbulence. These two quantities should therefore not be derived from single snapshot spectra if the aim is to use them as a solid diagnostic for the evaluation of stellar evolution models of slow to moderate rotators.Comment: 13 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    The rotation rates of massive stars: How slow are the slow ones?

    Full text link
    Context: Rotation plays a key role in the life cycles of stars with masses above 8 Msun. Hence, accurate knowledge of the rotation rates of such massive stars is critical for understanding their properties and for constraining models of their evolution. Aims: This paper investigates the reliability of current methods used to derive projected rotation speeds v sin i from line-broadening signatures in the photospheric spectra of massive stars, focusing on stars that are not rapidly rotating. Methods: We use slowly rotating magnetic O-stars with well-determined rotation periods to test the Fourier transform (FT) and goodness-of-fit (GOF) methods typically used to infer projected rotation rates of massive stars. Results: For our two magnetic test stars with measured rotation periods longer than one year, i.e., with v sin i < 1 km/s, we derive v sin i ~ 40-50 km/s from both the FT and GOF methods. These severe overestimates are most likely caused by an insufficient treatment of the competing broadening mechanisms referred to as microturbulence and macroturbulence. Conclusions: These findings warn us not to rely uncritically on results from current standard techniques to derive projected rotation speeds of massive stars in the presence of significant additional line broadening, at least when v sin i <~ 50 km/s. This may, for example, be crucial for i) determining the statistical distribution of observed rotation rates of massive stars, ii) interpreting the evolutionary status and spin-down histories of rotationally braked B-supergiants, and iii) explaining the deficiency of observed O-stars with spectroscopically inferred v sin i ~ 0 km/s. Further investigations of potential shortcomings of the above techniques are presently under way.Comment: 4 pages, 4 figures, accepted for publication in A&A Letter

    No temperature fluctuations in the giant HII region H 1013

    Get PDF
    While collisionally excited lines in HII regions allow one to easily probe the chemical composition of the interstellar medium in galaxies, the possible presence of important temperature fluctuations casts some doubt on the derived abundances. To provide new insights into this question, we have carried out a detailed study of a giant HII region, H 1013, located in the galaxy M101, for which many observational data exist and which has been claimed to harbour temperature fluctuations at a level of t^2 = 0.03-0.06. We have first complemented the already available optical observational datasets with a mid-infrared spectrum obtained with the Spitzer Space Telescope. Combined with optical data, this spectrum provides unprecedented information on the temperature structure of this giant HII region. A preliminary analysis based on empirical temperature diagnostics suggests that temperature fluctuations should be quite weak. We have then performed a detailed modelling using the pyCloudy package based on the photoionization code Cloudy. We have been able to produce photoionization models constrained by the observed Hb surface brightness distribution and by the known properties of the ionizing stellar population than can account for most of the line ratios within their uncertainties. Since the observational constraints are both strong and numerous, this argues against the presence of significant temperature fluctuations in H 1013. The oxygen abundance of our best model is 12 + log O/H = 8.57, as opposed to the values of 8.73 and 8.93 advocated by Esteban et al. (2009) and Bresolin (2007), respectively, based on the significant temperature fluctuations they derived. However, our model is not able to reproduce the intensities of the oxygen recombination lines . This cannot be attributed to observational uncertainties and requires an explanation other than temperature fluctuations.Comment: accepted in Astronomy & Astrophysic

    The massive multiple system HD 64315

    Get PDF
    The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, around 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901+/-0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569+/-0.0000008 d. We derive masses of 14.6+-2.3 M_\odot for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M_\odot and 10.2 M_\odot, and likely masses aprox. 30 M_\odot. HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90 M_\odot,but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system.Comment: 14 pages, 13 figures, 8 Table

    Surface abundances of ON stars

    Get PDF
    Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Hence, mass transfer is not a simple explanation for the observed chemical properties. We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present.Comment: 18 pages, 10 figures (+ appendix). A&A accepte

    Extreme mass ratios and fast rotation in three massive binaries

    Full text link
    The origin of rapid rotation in massive stars remains debated, although binary interactions are now often advocated as a cause. However, the broad and shallow lines in the spectra of fast rotators make direct detection of binarity difficult. In this paper, we report on the discovery and analysis of multiplicity for three fast-rotating massive stars: HD25631 (B3V), HD191495 (B0V), and HD46485 (O7V). They display strikingly similar TESS light curves, with two narrow eclipses superimposed on a sinusoidal variation due to reflection effects. We complement these photometric data by spectroscopy from various instruments (X-Shooter, Espadons, FUSE...), to further constrain the nature of these systems. The detailed analyses of these data demonstrates that the companions of the massive OB stars have low masses (~1Msol) with rather large radii (2-4 Rsol) and low temperatures (<15 kK). These companions display no UV signature, which would exclude a hot subdwarf nature, but disentangling of the large set of X-Shooter spectra of HD25631 revealed the typical signature of chromospheric activity in the companion's spectrum. In addition, despite the short orbital periods (P=3-7d), the fast-rotating OB-stars still display non-synchronized rotation and all systems appear young (<20Myr). This suggests that, as in a few other cases, these massive stars are paired in those systems with non-degenerate, low-mass PMS companions, implying that fast rotation would not be a consequence of a past binary interactions in their case.Comment: accepted for publication by MNRA

    Evidence of magnetic field decay in massive main-sequence stars

    Get PDF
    A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V band and range in mass between 5 and 100 Msun. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flux conservation. We also find that binary rejuvenation and magnetic suppression of core convection are unlikely to be responsible for the observed lack of older magnetic massive stars, and conclude that its most probable cause is the decay of the magnetic field, over a time span longer than the stellar lifetime for the lowest considered masses, and shorter for the highest masses. We then investigate the spin-down ages of the slowly rotating magnetic massive stars and find them to exceed the stellar ages by far in many cases. The high fraction of very slowly rotating magnetic stars thus provides an independent argument for a decay of the magnetic fields.Comment: Accepted for publication on A&A; 9 pages, 8 figure

    Spectral classification and properties of the O Vz stars in the Galactic O-Star Spectroscopic Survey (GOSSS)

    Get PDF
    On the basis of the Galactic O-Star Spectroscopic Survey (GOSSS), a detailed systematic investigation of the O Vz stars is presented. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He I 4471, He II 4542, and He II 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.Comment: Accepted for publication in The Astronomical Journa

    A map of OMC-1 in CO 9-8

    Full text link
    The distribution of 12C16O J=9-8 (1.037 THz) emission has been mapped in OMC-1 at 35 points with 84" resolution. This is the first map of this source in this transition and only the second velocity-resolved ground-based observation of a line in the terahertz frequency band. There is emission present at all points in the map, a region roughly 4' by 6' in size, with peak antenna temperature dropping only near the edges. Away from the Orion KL outflow, the velocity structure suggests that most of the emission comes from the OMC-1 photon-dominated region, with a typical linewidthof 3-6 km/s. Large velocity gradient modeling of the emission in J=9-8 and six lower transitions suggests that the lines originate in regions with temperatures around 120 K and densities of at least 10^(3.5) cm^(-3) near theta^(1) C Ori and at the Orion Bar, and from 70 K gas at around 10^(4) cm^(-3) southeast and west of the bar. These observations are among the first made with the 0.8 m Smithsonian Astrophysical Observatory Receiver Lab Telescope, a new instrument designed to observe at frequencies above 1 THz from an extremely high and dry site in northern Chile.Comment: Minor changes to references, text to match ApJ versio
    corecore