188 research outputs found

    One-pot synthesis of micron-sized polybetaine particles: innovative use of supercritical carbon dioxide

    Get PDF
    Polybetaines exhibit unique properties combining anti-polyelectrolyte and low protein fouling behaviour, as well as biocompatibility. To date, the synthesis of polybetaine particles >50 nm has proved to be extremely challenging with standard emulsion and dispersion techniques being unsuccessful. Here we present the first reported synthesis of micron-sized, discrete cross-linked polybetaine particles, using polymerisation in scCO2 with methanol as a co-solvent. Discrete particles are produced only when the methanol is efficiently removed in situ using scCO2 extraction. A relatively high crosslinking agent initial concentration (10 wt%) was found to result in the most well defined particles, and particle integrity reduced as the crosslinking agent initial concentration was decreased. A monomer loading of between 3.0 × 10−2 mol L−1 and 1.8 × 10−1 mol L−1 resulted in discrete micron sized particles, with significant agglomoration occuring as the monomer loading was increased further. A spherical morphology and extremely low size dispersity was observed by SEM analysis for the optimised particles. The particles were readily re-dispersed in aqueous solution and light scattering measurements confirmed their low size dispersity

    Inflationary Reheating Classes via Spectral Methods

    Full text link
    Inflationary reheating is almost completely controlled by the Floquet indices, μk\mu_k. Using spectral theory we demonstrate that the stability bands (where μk=0\mu_k = 0) of the Mathieu and Lam\'e equations are destroyed even in Minkowski spacetime, leaving a fractal Cantor set or a measure zero set of stable modes in the cases where the inflaton evolves in an almost-periodic or stochastic manner respectively. These two types of potential model the expected multi-field and quantum backreaction effects during reheating.Comment: 5 pages, 2 ps figures, Revtex. Version to appear in Phys. Rev. D (Rapid Communication, July 15

    Environmental risk factors in hospital suicide.

    Get PDF
    Suicide of hospitalized patients is the most common sentinel event reviewed by The Joint Commission on Accreditation of Healthcare Organizations. Shorter lengths of stay, sicker patients, and higher patient to staff ratios challenge the ability of the hospital to maintain safety. Risk factors associated with the physical environment of the inpatient psychiatric unit, cited as the most common root cause of inpatient suicide, may be neglected because evaluation of these factors is generally not included in medical education and training. Minimization of fixtures that can facilitate strangulation and other high risk aspects within the hospital environment is an important element in the prevention of suicide on psychiatric units

    Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxide

    Get PDF
    A stereoselective, solvent-free ring-opening polymerisation (ROP) of lactide (LA) in supercritical carbon dioxide (scCO2) is reported for the first time. The key aim is to exploit scCO2 to lower the temperature of traditional melt polymerisations, lowering the energy requirement and leading to cleaner polymeric materials. We have utilised a zirconium amine-trisphenolate initiator-stereoselective catalyst [(iPrO)Zr(OPh(tBu)2-CH2)3N] to yield highly heterotactic poly(lactide) (PLA) homopolymer (Pr = 0.74–0.84) from rac-LA, demonstrating control of the PLA microstructure in scCO2. In addition, high monomer conversion (86–93%) was achieved in short reaction time (1 h), affording poly(lactide) with a very low degree of transesterification and narrow molecular weight distribution. Most importantly, all the reactions were performed at only 80 °C, almost 100 °C lower than the conventional melt process (typically performed at 130–180 °C), representing a very significant potential energy saving

    Elevated <scp>CO<sub>2</sub></scp> interacts with nutrient inputs to restructure plant communities in phosphorus‐limited grasslands

    Get PDF
    AbstractGlobally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2) and N and P additions on grassland biodiversity, community and functional composition in P‐limited grasslands. We exposed soil‐turf monoliths from limestone and acidic grasslands that have received &gt;25 years of N additions (3.5 and 14 g m−2 year−1) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m−2 year−1) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2, N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2–nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co‐occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P‐acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P‐limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P‐acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.</jats:p

    The SAMI Galaxy Survey : mass as the driver of the kinematic morphology - density relation in clusters

    Get PDF
    We examine the kinematic morphology of early-type galaxies (ETGs) in eight galaxy clusters in the Sydney-AAO Multi-object Integral-field spectrograph Galaxy Survey. The clusters cover a mass range of 14.2log(M200/M☉) <15.2 and we measure spatially resolved stellar kinematics for 315 member galaxies with stellar masses 10.0 < log(M*/M☉) ≤ 11.7 within 1 R 200 of the cluster centers. We calculate the spin parameter, λ R , and use this to classify the kinematic morphology of the galaxies as fast or slow rotators (SRs). The total fraction of SRs in the ETG population is F SR = 0.14 ± 0.02 and does not depend on host cluster mass. Across the eight clusters, the fraction of SRs increases with increasing local overdensity. We also find that the slow-rotator fraction increases at small clustercentric radii (R cl < 0.3 R 200), and note that there is also an increase in the slow-rotator fraction at R cl ~ 0.6 R 200. The SRs at these larger radii reside in the cluster substructure. We find that the strongest increase in the slow-rotator fraction occurs with increasing stellar mass. After accounting for the strong correlation with stellar mass, we find no significant relationship between spin parameter and local overdensity in the cluster environment. We conclude that the primary driver for the kinematic morphology–density relationship in galaxy clusters is the changing distribution of galaxy stellar mass with the local environment. The presence of SRs in the substructure suggests that the cluster kinematic morphology–density relationship is a result of mass segregation of slow-rotating galaxies forming in groups that later merge with clusters and sink to the cluster center via dynamical friction.Publisher PDFPeer reviewe

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The impact of provider-initiated (opt-out) HIV testing and counseling of patients with sexually transmitted infection in Cape Town, South Africa: a controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effectiveness of provider-initiated HIV testing and counseling (PITC) for patients with sexually transmitted infection (STI) in resource-constrained settings are of particular concern for high HIV prevalence countries like South Africa. This study evaluated whether the PITC approach increased HIV testing amongst patients with a new episode of sexually transmitted infection, as compared to standard voluntary counseling and testing (VCT) at the primary care level in South Africa, a high prevalence and low resource setting.</p> <p>Methods</p> <p>The design was a pragmatic cluster-controlled trial with seven intervention and 14 control clinics in Cape Town. Nurses in intervention clinics integrated PITC into standard HIV care with few additional resources, whilst lay counselors continued with the VCT approach in control clinics. Routine data were collected for a six-month period following the intervention in 2007, on new STI patients who were offered and who accepted HIV testing. The main outcome measure was the proportion of new STI patients tested for HIV, with secondary outcomes being the proportions who were offered and who declined the HIV test.</p> <p>Results</p> <p>A significantly higher proportion of new STI patients in the intervention group tested for HIV as compared to the control group with (56.4% intervention versus 42.6% control, p = 0.037). This increase was achieved despite a significantly higher proportion intervention group declining testing when offered (26.7% intervention versus 13.5% control, p = 0.0086). Patients were more likely to be offered HIV testing in intervention clinics, where providers offered the HIV test to 76.8% of new STI patients versus 50.9% in the control group (p = 0.0029). There was significantly less variation in the main outcomes across the intervention clinics, suggesting that the intervention also facilitated more consistent performance.</p> <p>Conclusions</p> <p>PITC was successful in three ways: it increased the proportion of new STI patients tested for HIV; it increased the proportion of new STI patients offered HIV testing; and it delivered more consistent performance across clinics. Recommendations are made for increasing the impact and feasibility of PITC in high HIV prevalence and resource-constrained settings. These include more flexible use of clinical and lay staff, and combining PITC with VCT and other community-based approaches to HIV testing.</p> <p>Trial registration</p> <p>Controlled trial ISRCTN93692532</p

    Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits

    Get PDF
    Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI) computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks
    corecore