137 research outputs found

    Discovery of Novel Adenosine Receptor Agonists That Exhibit Subtype Selectivity.

    Get PDF
    A series of N(6)-bicyclic and N(6)-(2-hydroxy)cyclopentyl derivatives of adenosine were synthesized as novel A1R agonists and their A1R/A2R selectivity assessed using a simple yeast screening platform. We observed that the most selective, high potency ligands were achieved through N(6)-adamantyl substitution in combination with 5'-N-ethylcarboxamido or 5'-hydroxymethyl groups. In addition, we determined that 5'-(2-fluoro)thiophenyl derivatives all failed to generate a signaling response despite showing an interaction with the A1R. Some selected compounds were also tested on A1R and A3R in mammalian cells revealing that four of them are entirely A1R-selective agonists. By using in silico homology modeling and ligand docking, we provide insight into their mechanisms of recognition and activation of the A1R. We believe that given the broad tissue distribution, but contrasting signaling profiles, of adenosine receptor subtypes, these compounds might have therapeutic potential.This study was supported by the Swiss National Science Foundation (SNSF professorship PP00P2_123536 and PP00P2_146321 to M.L.), the BBSRC (G.L., BB/G01227X/1 and BB/M00015X/1), an MRC Doctoral Training Partnership (I.W. MR/J003964/1), and the EPSRC (A.K., EP/G500045/1).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.jmedchem.5b0140

    SWCam: the short wavelength camera for the CCAT Observatory

    Get PDF
    We describe the Short Wavelength Camera (SWCam) for the CCAT observatory including the primary science drivers, the coupling of the science drivers to the instrument requirements, the resulting implementation of the design, and its performance expectations at first light. CCAT is a 25 m submillimeter telescope planned to operate at 5600 meters, near the summit of Cerro Chajnantor in the Atacama Desert in northern Chile. CCAT is designed to give a total wave front error of 12.5 μm rms, so that combined with its high and exceptionally dry site, the facility will provide unsurpassed point source sensitivity deep into the short submillimeter bands to wavelengths as short as the 200 μm telluric window. The SWCam system consists of 7 sub-cameras that address 4 different telluric windows: 4 subcameras at 350 μm, 1 at 450 μm, 1 at 850 μm, and 1 at 2 mm wavelength. Each sub-camera has a 6’ diameter field of view, so that the total instantaneous field of view for SWCam is equivalent to a 16’ diameter circle. Each focal plane is populated with near unit filling factor arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) with pixels scaled to subtend an solid angle of (λ/D)2 on the sky. The total pixel count is 57,160. We expect background limited performance at each wavelength, and to be able to map < 35(°)2 of sky to 5 σ on the confusion noise at each wavelength per year with this first light instrument. Our primary science goal is to resolve the Cosmic Far-IR Background (CIRB) in our four colors so that we may explore the star and galaxy formation history of the Universe extending to within 500 million years of the Big Bang. CCAT's large and high-accuracy aperture, its fast slewing speed, use of instruments with large format arrays, and being located at a superb site enables mapping speeds of up to three orders of magnitude larger than contemporary or near future facilities and makes it uniquely sensitive, especially in the short submm bands

    Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2).

    Get PDF
    The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein α-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development.This work was supported by a Warwick Impact Fund (C.W., G.L.), the BBSRC (G.L. - BB/G01227X/1), (T.S., G.R., D.R. - BB/F008392/1), (D.P. - BB/M007529/1 and BB/M000176/1), Warwick Research Development Fund (C.W., G.L.) grant number (RD13301) and the Birmingham Science City Research Alliance (G.L).This is the final version of the article. It first appeared from ASBMB at http://dx.doi.org/10.1074/jbc.M114.62460

    Receptor activity modifying protein-directed G protein signaling specificity for the calcitonin gene-related peptide family of receptors

    Get PDF
    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through association of the calcitonin receptor-like receptor (CLR) and one of three receptor activitymodifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM) or intermedin/adrenomedullin2 (AM2) is well known to result in a Gαs-mediated increase in cAMP. Here we use modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs_{s} and Gαq_{q} but also identify a Gαi_{i} component to CLR signaling in both yeast and HEK- 293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand and RAMP-dependent signaling bias between Gαs_{s}, Gαi_{i} and Gαq/11_{q/11} pathways. The results are discussed in the context of RAMP interactions probed through molecular modelling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology, and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.This work was supported by the National Heart Foundation of New Zealand (H.W.), the School of Biological Sciences, University of Auckland seed fund (H.W.), the BBSRC (G.L. - BB/M00015X/1), (D.P. - BB/M000176/1), (C.A.R. - BB/M006883/1), a BBSRC Doctoral Training Partnership (M.H. – BB/JO14540/1), an MRC Doctoral Training Partnership (I.W. - MR/J003964/1), a Warwick Impact Fund (C.W., G.L.), a Warwick Research Development Fund (C.W., G.L.) grant number (RD13301) and the Warwick Undergraduate Research Scholarship Scheme (A.S and R.H).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the American Society for Biochemistry and Molecular Biology

    The Bolocam Galactic Plane Survey: Survey Description and Data Reduction

    Get PDF
    We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33" effective resolution of 170 square degrees of the Galactic Plane visible from the northern hemisphere. The survey is contiguous over the range -10.5 < l < 90.5, |b| < 0.5 and encompasses 133 square degrees, including some extended regions |b| < 1.5. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396, a region towards the Perseus Arm, W3/4/5, and Gem OB1. The BGPS has detected approximately 8400 clumps over the entire area to a limiting non-uniform 1-sigma noise level in the range 11 to 53 mJy/beam in the inner Galaxy. The BGPS source catalog is presented in a companion paper (Rosolowsky et al. 2010). This paper details the survey observations and data reduction methods for the images. We discuss in detail the determination of astrometric and flux density calibration uncertainties and compare our results to the literature. Data processing algorithms that separate astronomical signals from time-variable atmospheric fluctuations in the data time-stream are presented. These algorithms reproduce the structure of the astronomical sky over a limited range of angular scales and produce artifacts in the vicinity of bright sources. Based on simulations, we find that extended emission on scales larger than about 5.9' is nearly completely attenuated (> 90%) and the linear scale at which the attenuation reaches 50% is 3.8'. Comparison with other millimeter-wave data sets implies a possible systematic offset in flux calibration, for which no cause has been discovered. This presentation serves as a companion and guide to the public data release through NASA's Infrared Processing and Analysis Center (IPAC) Infrared Science Archive (IRSA). New data releases will be provided through IPAC IRSA with any future improvements in the reduction.Comment: Accepted for publication in Astrophysical Journal Supplemen

    Prioritising Infectious Disease Mapping.

    Get PDF
    BACKGROUND: Increasing volumes of data and computational capacity afford unprecedented opportunities to scale up infectious disease (ID) mapping for public health uses. Whilst a large number of IDs show global spatial variation, comprehensive knowledge of these geographic patterns is poor. Here we use an objective method to prioritise mapping efforts to begin to address the large deficit in global disease maps currently available. METHODOLOGY/PRINCIPAL FINDINGS: Automation of ID mapping requires bespoke methodological adjustments tailored to the epidemiological characteristics of different types of diseases. Diseases were therefore grouped into 33 clusters based upon taxonomic divisions and shared epidemiological characteristics. Disability-adjusted life years, derived from the Global Burden of Disease 2013 study, were used as a globally consistent metric of disease burden. A review of global health stakeholders, existing literature and national health priorities was undertaken to assess relative interest in the diseases. The clusters were ranked by combining both metrics, which identified 44 diseases of main concern within 15 principle clusters. Whilst malaria, HIV and tuberculosis were the highest priority due to their considerable burden, the high priority clusters were dominated by neglected tropical diseases and vector-borne parasites. CONCLUSIONS/SIGNIFICANCE: A quantitative, easily-updated and flexible framework for prioritising diseases is presented here. The study identifies a possible future strategy for those diseases where significant knowledge gaps remain, as well as recognising those where global mapping programs have already made significant progress. For many conditions, potential shared epidemiological information has yet to be exploited

    Prioritising Infectious Disease Mapping.

    Get PDF
    BACKGROUND: Increasing volumes of data and computational capacity afford unprecedented opportunities to scale up infectious disease (ID) mapping for public health uses. Whilst a large number of IDs show global spatial variation, comprehensive knowledge of these geographic patterns is poor. Here we use an objective method to prioritise mapping efforts to begin to address the large deficit in global disease maps currently available. METHODOLOGY/PRINCIPAL FINDINGS: Automation of ID mapping requires bespoke methodological adjustments tailored to the epidemiological characteristics of different types of diseases. Diseases were therefore grouped into 33 clusters based upon taxonomic divisions and shared epidemiological characteristics. Disability-adjusted life years, derived from the Global Burden of Disease 2013 study, were used as a globally consistent metric of disease burden. A review of global health stakeholders, existing literature and national health priorities was undertaken to assess relative interest in the diseases. The clusters were ranked by combining both metrics, which identified 44 diseases of main concern within 15 principle clusters. Whilst malaria, HIV and tuberculosis were the highest priority due to their considerable burden, the high priority clusters were dominated by neglected tropical diseases and vector-borne parasites. CONCLUSIONS/SIGNIFICANCE: A quantitative, easily-updated and flexible framework for prioritising diseases is presented here. The study identifies a possible future strategy for those diseases where significant knowledge gaps remain, as well as recognising those where global mapping programs have already made significant progress. For many conditions, potential shared epidemiological information has yet to be exploited
    corecore