91 research outputs found

    Immunization with apical membrane antigen 1 confers sterile infection-blocking immunity against Plasmodium sporozoite challenge in a rodent model

    Get PDF
    Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8 and CD4 T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity

    Plasmodium vivax but not Plasmodium falciparum blood-stage infection in humans is associated with the expansion of a CD8+ T cell population with cytotoxic potential

    Get PDF
    P. vivax and P. falciparum parasites display different tropism for host cells and induce very different clinical symptoms and pathology, suggesting that the immune responses required for protection may differ between these two species. However, no study has qualitatively compared the immune responses to P. falciparum or P. vivax in humans following primary exposure and infection. Here, we show that the two species differ in terms of the cellular immune responses elicited following primary infection. Specifically, P. vivax induced the expansion of a subset of CD8+ T cells expressing the activation marker CD38, whereas P. falciparum induced the expansion of CD38+ CD4+ T cells. The CD38+ CD8+ T cell population that expanded following P. vivax infection displayed greater cytotoxic potential compared to CD38- CD8+ T cells, and compared to CD38+ CD8+ T cells circulating during P. falciparum infection. We hypothesize that P. vivax infection leads to a stronger CD38+ CD8+ T cell activation because of its preferred tropism for MHC-I-expressing reticulocytes that, unlike mature red blood cells, can present antigen directly to CD8+ T cells. This study provides the first line of evidence to suggest an effector role for CD8+ T cells in P. vivax blood-stage immunity. It is also the first report of species-specific differences in the subset of T cells that are expanded following primary Plasmodium infection, suggesting that malaria vaccine development may require optimization according to the target parasite

    Opposing Roles for Membrane Bound and Soluble Fas Ligand in Glaucoma-Associated Retinal Ganglion Cell Death

    Get PDF
    Glaucoma, the most frequent optic neuropathy, is a leading cause of blindness worldwide. Death of retinal ganglion cells (RGCs) occurs in all forms of glaucoma and accounts for the loss of vision, however the molecular mechanisms that cause RGC loss remain unclear. The pro-apoptotic molecule, Fas ligand, is a transmembrane protein that can be cleaved from the cell surface by metalloproteinases to release a soluble protein with antagonistic activity. Previous studies documented that constitutive ocular expression of FasL maintained immune privilege and prevented neoangeogenesis. We now show that FasL also plays a major role in retinal neurotoxicity. Importantly, in both TNFα triggered RGC death and a spontaneous model of glaucoma, gene-targeted mice that express only full-length FasL exhibit accelerated RGC death. By contrast, FasL-deficiency, or administration of soluble FasL, protected RGCs from cell death. These data identify membrane-bound FasL as a critical effector molecule and potential therapeutic target in glaucoma

    Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    Get PDF
    Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo

    Addressing the bottleneck at clinical testing of candidate malaria vaccines

    No full text
    [Extract] Invited Commentary on 'Preerythrocytic and Blood-Stage Malaria Vaccines Can Be Assessed in Small Sporozoite Challenge Trials in Human Volunteers', Roestenberg et al., Journal of Infectious Diseases, 2012. Vaccines are a very effective health care intervention but are not available for many diseases, including malaria. Potential candidates have been identified in preclinical research studies and some have progressed through preclinical development to clinical trials (http://www.who.int/vaccine_research/links/Rainbow/en/index.html). However, the vaccine development pathway is long and expensive and there is a major bottleneck at the stage of clinical testing. For malaria, only a single candidate has advanced to Phase 3.1 Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, et al.. RTS,S Clinical Trials Partnership. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365(20):1863–75. Moreover, rodent malaria models exist but protection against challenge with the causative parasites of human malaria can only be assessed in humans, and there are no known correlates of protective immunity to malaria. Candidate vaccines that fail to meet defined go/no-go criteria in animals during development may nonetheless exhibit efficacy in humans. The testing of a larger portfolio of vaccine candidates in small numbers of volunteers in clinical research studies would be valuable

    Genome-based vaccine design: the promise for malaria and other infectious diseases

    Get PDF
    Vaccines are one of the most effective interventions to improve public health, however, the generation of highly effective vaccines for many diseases has remained difficult. Three chronic diseases that characterise these difficulties include malaria, tuberculosis and HIV, and they alone account for half of the global infectious disease burden. The whole organism vaccine approach pioneered by Jenner in 1796 and refined by Pasteur in 1857 with the "isolate, inactivate and inject" paradigm has proved highly successful for many viral and bacterial pathogens causing acute disease but has failed with respect to malaria, tuberculosis and HIV as well as many other diseases. A significant advance of the past decade has been the elucidation of the genomes, proteomes and transcriptomes of many pathogens. This information provides the foundation for new 21st Century approaches to identify target antigens for the development of vaccines, drugs and diagnostic tests. Innovative genome-based vaccine strategies have shown potential for a number of challenging pathogens, including malaria. We advocate that genome-based rational vaccine design will overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued vaccine developers for many years

    Development of a cytokine-secreting-based assay for the identification, sorting and transcriptomic analysis of polyfunctional human T cells

    No full text
    Polyfunctional T cells that simultaneously produce the cytokines IFN-γ, IL-2 and TNF have been correlated with better clinical outcomes in various diseases. To date, cytokine polyfunctionality within T cells has been exclusively studied by intracellular cytokine staining coupled with flow cytometric analysis. Thus, further downstream interrogation of polyfunctional T cell characteristics such as transcriptomic analysis has not been possible. Here, we report the use of a flow cytometric method based on cytokine secretion assay technology to detect and isolate, for the first time, viable human polyfunctional T cells directly from in vitro stimulated whole blood samples. We demonstrate the successful application of this method to sort polyfunctional T cells obtained from human volunteers, which can be then used for downstream applications such as transcriptomic analysis using RTqPCR. This assay will facilitate in-depth investigations of T cells with distinct cytokine polyfunctionality, including defining their molecular profile and understanding the mechanisms regulating their generation and function

    Systems approaches towards molecular profiling of human immunity

    No full text
    Systems immunology integrates cutting-edge technologies with bioinformatics to comprehensively interrogate the immune response to infection at an organismal level. Here, we review studies that have leveraged transcriptomic, genomic, proteomic, and metabolomic approaches towards the identification of cells, molecules, and pathways implicated in host–pathogen interactions. We discuss the potential of single cell technologies for the study of human immune responses and, in this context, we advocate that systems immunology provides a conceptual and methodological framework to harness these approaches to address longstanding questions of fundamental and applied immunology. Recognizing that the field is still in its infancy, we also discuss current limitations of systems immunology, as well as the need for validation of key findings for the discipline to fulfill its promise

    Interferon-γ and interleukin-4 reciprocally regulate CD8 expression in CD8+ T cells

    No full text
    The CD8 co-receptor can modulate CD8+ T cell function through its contributions to T cell receptor (TCR) binding and signaling. Here we show that IFN-γ and IL-4 exert opposing effects on the expression of CD8α mRNA and surface CD8 protein during CD8+ T cell activation. IL-4 caused down-regulation of surface CD8 on ovalbumin (OVA)257–264-specific TCR-transgenic OT-I CD8+ T cells activated with OVA257–264-coated antigen presenting cells or polyclonal stimuli, and on wild type CD8+ T cells activated with polyclonal stimuli. This effect was enhanced in each case when the cells lacked a functional IFN-γ or IFN-γR gene. When WT or IFN-γ-deficient OT-I CD8+ T cells were analyzed 9 days after co-injection with control or IL-4-expressing OVA+ tumor cells into RAG-2−/−γc−/− mice, CD8 levels were highest on WT donor cells from mice that received the control tumor and lowest on IFN-γ-deficient donor cells from mice that received the IL-4-expressing tumor. The latter CD8low cells displayed markedly impaired binding of OVA257–264/MHC tetramers and peptide/MHC-dependent degranulation. The data reveal an unexpected role for IFN-γ in tuning the CD8 co-receptor during primary CD8+ T cell activation both in vitro and in vivo
    • …
    corecore