282 research outputs found

    The role of cosmic ray pressure in accelerating galactic outflows

    Get PDF
    We study the formation of galactic outflows from supernova explosions (SNe) with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SNe placement and energy feedback, including cosmic rays (CR), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.Comment: 8 pages, 4 figures, accepted for publication in ApJL; movie of simulated gas densities can be found here: http://www.h-its.org/tap-images/galactic-outflows

    The effects of dynamical substructure on Milky Way mass estimates from the high velocity tail of the local stellar halo

    Get PDF
    We investigate the impact of dynamical streams and substructure on estimates of the local escape speed and total mass of Milky Way-mass galaxies from modelling the high velocity tail of local halo stars. We use a suite of high-resolution, magneto-hydrodynamical cosmological zoom-in simulations, which resolve phase space substructure in local volumes around solar-like positions. We show that phase space structure varies significantly between positions in individual galaxies and across the suite. Substructure populates the high velocity tail unevenly and leads to discrepancies in the mass estimates. We show that a combination of streams, sample noise and truncation of the high velocity tail below the escape speed leads to a distribution of mass estimates with a median that falls below the true value by 20%\sim 20 \%, and a spread of a factor of 2 across the suite. Correcting for these biases, we derive a revised value for the Milky Way mass presented in Deason et al. of 1.290.47+0.37×10121.29 ^{+0.37}_{-0.47} \times 10^{12} M\rm M_{\odot}.Comment: Re-submitted to MNRAS Letters after minor revisio

    Expedition 306 summary

    No full text
    The overall aim of the North Atlantic paleoceanography study of Integrated Ocean Drilling Program Expedition 306 is to place late Neogene–Quaternary climate proxies in the North Atlantic into a chronology based on a combination of geomagnetic paleointensity, stable isotope, and detrital layer stratigraphies, and in so doing generate integrated North Atlantic millennial-scale stratigraphies for the last few million years. To reach this aim, complete sedimentary sections were drilled by multiple advanced piston coring directly south of the central Atlantic “ice-rafted debris belt” and on the southern Gardar Drift. In addition to the North Atlantic paleoceanography study, a borehole observatory was successfully installed in a new ~180 m deep hole close to Ocean Drilling Program Site 642, consisting of a circulation obviation retrofit kit to seal the borehole from the overlying ocean, a thermistor string, and a data logger to document and monitor bottom water temperature variations through time

    Central extracorporeal life support with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure

    Get PDF
    BACKGROUND: The purpose of this prospective study was to evaluate the effects and functional outcome of central extracorporeal life support (ECLS) with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure. METHODS: Between August 2010 and August 2013, 12 consecutive patients (2 female) with a mean age of 31.6 ± 15.1 years received central ECLS with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure. Underlying disease was acute cardiac decompensation due to dilated cardiomyopathy (n = 3, 25%), coronary artery disease with acute myocardial infarction (AMI) (n = 3, 25%), and acute myocarditis (n = 6, 50%). We routinely implemented ECLS by cannulating the ascending aorta, right atrium and inserting a left ventricular decompression cannula vent via the right superior pulmonary vein. RESULTS: All patients were successfully bridged to either recovery (n = 3, 25%), long-term biventricular support (n = 6, 50%) or cardiac transplantation (n = 3, 25%). Seven patients (58.3%) were discharged after a mean hospital stay of 42 ± 11.9 days. The overall survival from ECLS implantation to the end of the study was 58.3%. The cumulative ICU stay was 23.1 ± 9.6 days. The length of support was 8.0 ± 4.3 days (range 3-17 days). CONCLUSIONS: We strongly recommend left ventricular decompression in refractory cardiogenic shock and lung failure to avoid pulmonary edema, left heart distension and facilitate myocardial recovery

    The MillenniumTNG Project: The hydrodynamical full physics simulation and a first look at its galaxy clusters

    Get PDF
    Cosmological simulations are an important theoretical pillar for understanding nonlinear structure formation in our Universe and for relating it to observations on large scales. In several papers, we introduce our MillenniumTNG (MTNG) project that provides a comprehensive set of high-resolution, large volume simulations of cosmic structure formation aiming to better understand physical processes on large scales and to help interpreting upcoming large-scale galaxy surveys. We here focus on the full physics box MTNG740 that computes a volume of (740Mpc)3(740\,\mathrm{Mpc})^3 with a baryonic mass resolution of 3.1× 107M3.1\times~10^7\,\mathrm{M_\odot} using \textsc{arepo} with 80.680.6~billion cells and the IllustrisTNG galaxy formation model. We verify that the galaxy properties produced by MTNG740 are consistent with the TNG simulations, including more recent observations. We focus on galaxy clusters and analyse cluster scaling relations and radial profiles. We show that both are broadly consistent with various observational constraints. We demonstrate that the SZ-signal on a deep lightcone is consistent with Planck limits. Finally, we compare MTNG740 clusters with galaxy clusters found in Planck and the SDSS-8 RedMaPPer richness catalogue in observational space, finding very good agreement as well. However, {\it simultaneously} matching cluster masses, richness, and Compton-yy requires us to assume that the SZ mass estimates for Planck clusters are underestimated by 0.20.2~dex on average. Thanks to its unprecedented volume for a high-resolution hydrodynamical calculation, the MTNG740 simulation offers rich possibilities to study baryons in galaxies, galaxy clusters, and in large scale structure, and in particular their impact on upcoming large cosmological surveys.Comment: 18 pages, 14 figures, accepted for publication by MNRAS, comments welcom

    Guideline adherence in the use of coronary angiography in patients presenting at the emergency department without myocardial infarction – results from the German ENLIGHT-KHK project

    Get PDF
    Background For patients with acute myocardial infarction (AMI), direct coronary angiography (CA) is recommended, while for non-AMI patients, the diagnostic work-up depends on clinical criteria. This analysis provides initial prospective German data for the degree of guideline-adherence (GL) in the use of CA on non-AMI patients presenting at the emergency department (ED) with suspected acute coronary syndrome (ACS) according to the 2015 ESC-ACS-GL. Furthermore the implications of the application of the 2020 ESC-ACS-GL recommendations were evaluated. Methods Patient symptoms were identified using a standardized questionnaire; medical history and diagnostic work-up were acquired from health records. In accordance with the 2015 ESC-ACS-GL, CA was considered GL-adherent if intermediate risk criteria (IRC) were present or non-invasive, image-guided testing (NIGT) was pathological. Results Between January 2019 and August 2021, 229 patients were recruited across seven centers. Patients presented with chest pain, dyspnea, and other symptoms in 66.7%, 16.2% and 17.1%, respectively, were in mean 66.3 ± 10.5 years old, and 36.3% were female. In accordance with the 2015 ESC-ACS-GL, the use of CA was GL-adherent for 64.0% of the patients. GL-adherent compared to non-adherent use of CA resulted in revascularization more often (44.5% vs. 17.1%, p < 0.001). Applying the 2020 ESC-ACS-GL, 20.4% of CA would remain GL-adherent. Conclusions In the majority of cases, the use of CA was adherent to the 2015 ESC-ACS-GL. With regard to the 2020 and 2023 ESC-ACS-GL, efforts to expand the utilization of NIGT are crucial, especially as GL-adherent use of CA is more likely to result in revascularization

    Large Scale Azimuthal Structures Of Turbulence In Accretion Disks - Dynamo triggered variability of accretion

    Full text link
    We investigate the significance of large scale azimuthal, magnetic and velocity modes for the MRI turbulence in accretion disks. We perform 3D global ideal MHD simulations of global stratified proto-planetary disk models. Our domains span azimuthal angles of \pi/4, \pi/2, \pi and 2\pi. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models \pi/2 and \pi/4 compared to the full 2\pi model. We show that for those models, the Maxwell Stress is larger due to strong axisymmetric magnetic fields, generated by the \alpha \Omega dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-\alpha in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2\pi, the toroidal field is mostly antisymmetric in respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelengths of the turbulent velocity and magnetic fields are between one and two disk scale heights. At the midplane, we find magnetic tilt angles around 8-9 degree increasing up to 12-13 degree in the corona. We conclude that an azimuthal extent of \pi is sufficient to reproduce most turbulent properties in 3D global stratified simulations of magnetised accretion disks.Comment: accepted for publication in Ap

    Successful Treatment of Novel H1N1 Influenza related Fulminant Myocarditis with Extracorporeal Life Support

    Get PDF
    The prevalence of myocardial involvement in influenza infection ranges from 0% to 12%. The 2009 pH1N1 influenza virus, formerly known as swine flu, first appeared in Mexico and the United States of America in March and April 2009 and has swept the globe with unprecedented speed. We report a case of fulminant myocarditis associated with this virus treated successfully using extra-corporal membrane oxygenator

    Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species

    Get PDF
    Külahoglu C, Denton AK, Sommer M, et al. Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species. Plant Cell. 2014;26(8):3243-3260.C-4 photosynthesis outperforms the ancestral C-3 state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C-3 backgrounds. However, the genetic architecture of C-4 photosynthesis remains largely unknown. To define the divergence in gene expression modules between C-3 and C-4 photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C-4) and Tarenaya hassleriana (C-3), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C-3 and C-4 species. We found that known C-4 genes were recruited to photosynthesis from different expression domains in C-3, including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C-3 root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C-4 bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C-4 leaf
    corecore