4,091 research outputs found

    Global Solutions for the One-Dimensional Vlasov-Maxwell System for Laser-Plasma Interaction

    Get PDF
    We analyse a reduced 1D Vlasov--Maxwell system introduced recently in the physical literature for studying laser-plasma interaction. This system can be seen as a standard Vlasov equation in which the field is split in two terms: an electrostatic field obtained from Poisson's equation and a vector potential term satisfying a nonlinear wave equation. Both nonlinearities in the Poisson and wave equations are due to the coupling with the Vlasov equation through the charge density. We show global existence of weak solutions in the non-relativistic case, and global existence of characteristic solutions in the quasi-relativistic case. Moreover, these solutions are uniquely characterised as fixed points of a certain operator. We also find a global energy functional for the system allowing us to obtain LpL^p-nonlinear stability of some particular equilibria in the periodic setting

    Fock quantization of a scalar field with time dependent mass on the three-sphere: unitarity and uniqueness

    Get PDF
    We study the Fock description of a quantum free field on the three-sphere with a mass that depends explicitly on time, also interpretable as an explicitly time dependent quadratic potential. We show that, under quite mild restrictions on the time dependence of the mass, the specific Fock representation of the canonical commutation relations which is naturally associated with a massless free field provides a unitary dynamics even when the time varying mass is present. Moreover, we demonstrate that this Fock representation is the only acceptable one, up to unitary equivalence, if the vacuum has to be SO(4)-invariant (i.e., invariant under the symmetries of the field equation) and the dynamics is required to be unitary. In particular, the analysis and uniqueness of the quantization can be applied to the treatment of cosmological perturbations around Friedmann-Robertson-Walker spacetimes with the spatial topology of the three-sphere, like e.g. for gravitational waves (tensor perturbations). In addition, we analyze the extension of our results to free fields with a time dependent mass defined on other compact spatial manifolds. We prove the uniqueness of the Fock representation in the case of a two-sphere as well, and discuss the case of a three-torus.Comment: 30 page

    Forest Stewardship Council (FSC) pesticide policy and integrated pest management in certified tropical plantations

    Get PDF
    The Forest Stewardship Council (FSC) was the first non-governmental organization composed of multi-stakeholders to ensure the social, environmental, and economic sustainability of forest resources. FSC prohibits certain chemicals and active ingredients in certified forest plantations. A company seeking certification must discontinue use of products so listed and many face problems to comply with these constraints. The aim of this study was to assess the impacts of certification on pest management from the perspective of Brazilian private forestry sector. Ninety-three percent of Brazilian FSC-certified forest companies rated leaf-cutting ants as “very important” pests. Chemical control was the most important management technique used and considered very important by 82 % of respondents. The main chemical used to control leaf-cutting ants, sulfluramid, is in the derogation process and was classified as very important by 96.5 % of the certified companies. Certified companies were generally satisfied in relation to FSC certification and the integrated management of forest pests, but 27.6 % agreed that the prohibitions of pesticides for leaf-cutting ant and termite control could be considered as a non-tariff barrier on high-productivity Brazilian forest plantations. FSC forest certification has encouraged the implementation of more sustainable techniques and decisions in pest management in forest plantations in Brazil. The prohibition on pesticides like sulfluramid and the use of alternatives without the same efficiency will result in pest mismanagement, production losses, and higher costs. This work has shown that the application of global rules for sustainable forest management needs to adapt to each local reality

    Enhancement of TbIII-CuII single-molecule magnet performance through structural modification

    Get PDF
    We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc−, Ln=Gd, Tb or X=NO3−, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc− for NO3−). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C4v versus Cs)

    Uniqueness of the Fock quantization of fields with unitary dynamics in nonstationary spacetimes

    Get PDF
    The Fock quantization of fields propagating in cosmological spacetimes is not uniquely determined because of several reasons. Apart from the ambiguity in the choice of the quantum representation of the canonical commutation relations, there also exists certain freedom in the choice of field: one can scale it arbitrarily absorbing background functions, which are spatially homogeneous but depend on time. Each nontrivial scaling turns out into a different dynamics and, in general, into an inequivalent quantum field theory. In this work we analyze this freedom at the quantum level for a scalar field in a nonstationary, homogeneous spacetime whose spatial sections have S3S^3 topology. A scaling of the configuration variable is introduced as part of a linear, time dependent canonical transformation in phase space. In this context, we prove in full detail a uniqueness result about the Fock quantization requiring that the dynamics be unitary and the spatial symmetries of the field equations have a natural unitary implementation. The main conclusion is that, with those requirements, only one particular canonical transformation is allowed, and thus only one choice of field-momentum pair (up to irrelevant constant scalings). This complements another previous uniqueness result for scalar fields with a time varying mass on S3S^3, which selects a specific equivalence class of Fock representations of the canonical commutation relations under the conditions of a unitary evolution and the invariance of the vacuum under the background symmetries. In total, the combination of these two different statements of uniqueness picks up a unique Fock quantization for the system. We also extend our proof of uniqueness to other compact topologies and spacetime dimensions.Comment: 12 page

    Accurate OH maser positions II. the Galactic Center region

    Full text link
    We present high spatial resolution observations of ground-state OH masers, achieved using the Australia Telescope Compact Array (ATCA). These observations were conducted towards 171 pointing centres, where OH maser candidates were identified previously in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) towards the Galactic Center region, between Galactic longitudes of 355355^{\circ} and 55^{\circ} and Galactic latitudes of 2-2^{\circ} and +2+2^{\circ}. We detect maser emission towards 162 target fields and suggest that 6 out of 9 non-detections are due to intrinsic variability. Due to the superior spatial resolution of the follow-up ATCA observations, we have identified 356 OH maser sites in the 162 of the target fields with maser detections. Almost half (161 of 356) of these maser sites have been detected for the first time in these observations. After comparing the positions of these 356 maser sites to the literature, we find that 269 (76\%) sites are associated with evolved stars (two of which are planetary nebulae), 31 (9\%) are associated with star formation, four are associated with supernova remnants and we were unable to determine the origin of the remaining 52 (15\%) sites. Unlike the pilot region (\citealt{Qie2016a}), the infrared colors of evolved star sites with symmetric maser profiles in the 1612 MHz transition do not show obvious differences compared with those of evolved star sites with asymmetric maser profiles.Comment: 24 pages, 12 figures, accepted by ApJ

    Noise control by sonic crystal barriers made of recycled materials

    Full text link
    A systematic study of noise barriers based on sonic crystals made of cylinders that use recycled materials like absorbing component is here reported. The barriers consist of only three rows of perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance by these barriers are reported. Their attenuation properties result from a combination of sound absorption by the rubber crumb and reflection by the periodic distribution of scatterers. It is concluded that porous cylinders can be used as building blocks whose physical parameters can be optimized in order to design efficient barriers adapted to different noisy environments

    Self-organization of collaboration networks

    Get PDF
    We study collaboration networks in terms of evolving, self-organizing bipartite graph models. We propose a model of a growing network, which combines preferential edge attachment with the bipartite structure, generic for collaboration networks. The model depends exclusively on basic properties of the network, such as the total number of collaborators and acts of collaboration, the mean size of collaborations, etc. The simplest model defined within this framework already allows us to describe many of the main topological characteristics (degree distribution, clustering coefficient, etc.) of one-mode projections of several real collaboration networks, without parameter fitting. We explain the observed dependence of the local clustering on degree and the degree--degree correlations in terms of the ``aging'' of collaborators and their physical impossibility to participate in an unlimited number of collaborations.Comment: 10 pages, 8 figure

    Unique Fock quantization of scalar cosmological perturbations

    Get PDF
    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lema\^{i}tre-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.Comment: 19 pages, minor impovementes included, typos correcte

    Effect of Treatment with DL-carnitine after Acute Alcoholization in Rats

    Get PDF
    Acute ethanol consumption leads to the formation of free radicals. Among other functions, carnitine has  an important antioxidant role and chronic ethanol use leads to carnitine deficiency. The objective of the  present study was to determine the variation in the carnitine pool (free cernitine plus its acylated derivates)  and the hepatic oxidative stress occurring in the presence of acute ethanol administration followed by  treatment with carnitine in rats. Male Wistar rats weighing approximately 60 g were divided at random  into four groups of 7 animals each, i.e., group receiving carnitine, group receiving carnitine plus ethanol,  group receiving ethanol alone, and untreated control. Acute administration of ethanol and/or carnitine did  not change the total amount of carnitine and its derivates in plasma but did alter their profile with the free  carnitine increasing to over 75%, while the mean percentage of free carnitine in the control group was 33.2%.  There was marked carnitine excretion in the groups treated with DL-carnitine. Higher lipid peroxidation  was detected in the groups receiving carnitine, with the maintenance of vitamin E. We conclude that the  administration of DL-carnitine after an episode of alcohol intoxication has no beneficial effect in terms of  hepatic oxidative stress.
    corecore