9 research outputs found

    Hamilton's turns as visual tool-kit for designing of single-qubit unitary gates

    Get PDF
    Unitary evolutions of a qubit are traditionally represented geometrically as rotations of the Bloch sphere, but the composition of such evolutions is handled algebraically through matrix multiplication [of SU(2) or SO(3) matrices]. Hamilton's construct, called turns, provides for handling the latter pictorially through the as addition of directed great circle arcs on the unit sphere S2⊂R3^2 \subset \mathbb{R}^3, resulting in a non-Abelian version of the parallelogram law of vector addition of the Euclidean translation group. This construct is developed into a visual tool-kit for handling the design of single-qubit unitary gates. As an application, it is shown, in the concrete case wherein the qubit is realized as polarization states of light, that all unitary gates can be realized conveniently through a universal gadget consisting of just two quarter-wave plates (QWP) and one half-wave plate (HWP). The analysis and results easily transcribe to other realizations of the qubit: The case of NMR is obtained by simply substituting π/2\pi/2 and π\pi pulses respectively for QWPs and HWPs, the phases of the pulses playing the role of the orientation of fast axes of these plates.Comment: 16 Pages, 14 Figures, Published versio
    corecore