311 research outputs found
Professional Reading: Amphibious Operations
Gallipoli, and Victory at High Tid
Recommended from our members
Neural hypersensitivity to pleasant touch in women remitted from anorexia nervosa.
Interoception, or the sensing and integration of bodily state signals, has been implicated in anorexia nervosa (AN), given that the hallmark symptoms involve food restriction and body image disturbance. Here we focus on brain response to the anticipation and experience of affective interoceptive stimuli. Women remitted from AN (RAN; N = 18) and healthy comparison women (CW; N = 26) underwent a pleasant affective touch paradigm consisting of gentle strokes with a soft brush administered to the forearm or palm during functional neuroimaging. RAN had a lower brain response relative to CW during anticipation of touch, but a greater response when experiencing touch in the right ventral mid-insula. In RAN, this reduced anticipatory response was associated with higher levels of harm avoidance. Exploratory analyses in RAN also suggested that lower response during touch anticipation was associated with greater body dissatisfaction and higher perceived touch intensity ratings. This reduced responsivity to the anticipation of pleasant affective interoceptive stimuli in association with higher harm avoidance, along with an elevated response to the experience of touch, suggests an impaired ability in AN to predict and interpret incoming physiological stimuli. Impaired interoception may thus impact one's sense of self, thereby supporting observations of disturbed body image and avoidance of affective and social stimuli. Therapeutic approaches that help AN to better anticipate and interpret salient affective stimuli or improve tolerance of interoceptive experiences may be an important addition to current interventions
X-Ray and UV Orbital Phase Dependence in LMC X-3
The black-hole binary LMC X-3 is known to be variable on time scales of days
to years. We investigate X-ray and ultraviolet variability in the system as a
function of the 1.7 day binary phase using a 6.4 day observation with the Rossi
X-ray Timing Explorer (RXTE) from December 1998. An abrupt 14% flux decrease,
lasting nearly an entire orbit, is followed by a return to previous flux
levels. This behavior occurs twice, at nearly the same binary phase, but it is
not present in consecutive orbits. When the X-ray flux is at lower intensity, a
periodic amplitude modulation of 7% is evident in data folded modulo the
orbital period. The higher intensity data show weaker correlation with phase.
This is the first report of X-ray variability at the orbital period of LMC X-3.
Archival RXTE observations of LMC X--3 during a high flux state in December
1996 show similar phase dependence. An ultraviolet light curve obtained with
the High Speed Photometer aboard the Hubble Space Telescope shows orbital
modulation consistent with that in the optical, caused by the ellipsoidal
variation of the spatially deformed companion.
The X-ray spectrum of LMC X-3 can be acceptably represented by a
phenomenological disk-black-body plus a power law. Changes in the spectrum of
LMC X-3 during our observations are compatible with earlier observations during
which variations in the 2-10 keV flux are tracked closely by the disk geometry
spectral model parameter.Comment: 11 pages, 7 figures, ApJ in pres
Semidiurnal Internal Tide Energy Fluxes and Their Variability in a Global Ocean Model and Moored Observations
We examine the temporal means and variability of the semidiurnal internal tide energy fluxes in 1/25° global simulations of the Hybrid Coordinate Ocean Model (HYCOM) and in a global archive of 79 historical moorings. Low-frequency flows, a major cause of internal tide variability, have comparable kinetic energies at the mooring sites in model and observations. The computed root-mean-square (RMS) variability of the energy flux is large in both model and observations and correlates positively with the time-averaged flux magnitude. Outside of strong generation regions, the normalized RMS variability (the RMS variability divided by the mean) is nearly independent of the flux magnitudes in the model, and of order 23% or more in both the model and observations. The spatially averaged flux magnitudes in observations and the simulation agree to within a factor of about 1.4 and 2.4 for vertical mode-1 and mode-2, respectively. The difference in energy flux computed from the full-depth model output versus model output subsampled at mooring instrument depths is small. The global historical archive is supplemented with six high-vertical resolution moorings from the Internal Waves Across the Pacific (IWAP) experiment. The model fluxes agree more closely with the high-resolution IWAP fluxes than with the historical mooring fluxes. The high variability in internal tide energy fluxes implies that internal tide fluxes computed from short observational records should be regarded as realizations of a highly variable field, not as “means” that are indicative of conditions at the measurement sites over all time
Extending enzyme molecular recognition with an expanded amino acid alphabet
Natural enzymes are constructed from the twenty proteogenic amino acids, which may then require post-translational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of non-canonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different non-canonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically-modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modelling studies revealed that the unique shape and functionality of the non-canonical side chain enabled the active site to be remodelled to enable more efficient stabilisation of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties
Sucrose activates human taste pathways differently from artificial sweetener
Animal models suggest that sucrose activates taste afferents differently than non-caloric sweeteners. Little information exists how artificial sweeteners engage central taste pathways in the human brain. We assessed sucrose and sucralose taste pleasantness across a concentration gradient in 12 healthy control women and applied 10% sucrose and matched sucralose during functional magnet resonance imaging. The results indicate that (1) both sucrose and sucralose activate functionally connected primary taste pathways; (2) taste pleasantness predicts left insula response; (3) sucrose elicits a stronger brain response in the anterior insula, frontal operculum, striatum and anterior cingulate, compared to sucralose; (4) only sucrose, but not sucralose, stimulation engages dopaminergic midbrain areas in relation to the behavioral pleasantness response. Thus, brain response distinguishes the caloric from the non-caloric sweetener, although the conscious mind could not. This could have important implications on how effective artificial sweeteners are in their ability to substitute sugar intake
The role of biophysical cohesion on subaqueous bed form size
Biologically active, fine-grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud-sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross-stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
We present the design and performance of the multi-object fiber spectrographs
for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon
Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999
on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the
spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II
surveys, enabling a wide variety of Galactic and extra-galactic science
including the first observation of baryon acoustic oscillations in 2005. The
spectrographs were upgraded in 2009 and are currently in use for BOSS, the
flagship survey of the third-generation SDSS-III project. BOSS will measure
redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha
absorption of 160,000 high redshift quasars over 10,000 square degrees of sky,
making percent level measurements of the absolute cosmic distance scale of the
Universe and placing tight constraints on the equation of state of dark energy.
The twin multi-object fiber spectrographs utilize a simple optical layout
with reflective collimators, gratings, all-refractive cameras, and
state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in
two channels over a bandpass covering the near ultraviolet to the near
infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven
heritage, the spectrographs were upgraded for BOSS with volume-phase
holographic gratings and modern CCD detectors, improving the peak throughput by
nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000
nm, and increasing the number of fibers from 640 to 1000 per exposure. In this
paper we describe the original SDSS spectrograph design and the upgrades
implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and
accepted by AJ. Provides background for the instrument responsible for SDSS
and BOSS spectra. 4th in a series of survey technical papers released in
Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral
Classification), and arXiv:1208.0022 (BOSS Overview
Hen Harrier Circus cyaneus nest sites on the Isle of Mull are associated with habitat mosaics and constrained by topography
This is an Accepted Manuscript of an article published by Taylor & Francis in Bird Study on 07/02/2018, available online: http://www.tandfonline.com/doi/full/10.1080/00063657.2017.1421611Capsule: Hen Harrier on the Isle of Mull, UK, are associated with habitat mosaics consisting of moorland, scrub and forestry but avoid grazed land, suggesting that forested habitats could be managed sympathetically for Hen Harrier in the future should the current UK population increase. Aims: To use distribution modelling to investigate nesting habitat associations using a long term dataset for Hen Harrier on Mull. Methods: We develop area-interaction models using a LASSO penalty to explore the distribution of 102 Hen Harrier nest sites in relation to habitat and topography. Our model is then successfully validated in tests using data for 70 nest sites from subsequent years. Results: Our model is effective in predicting suitable areas for Hen Harrier nest sites and indicates that Hen Harriers on Mull are found in habitat mosaics below 200 m asl. Hen Harrier nest intensity is positively associated with increasing proportions of moorland and scrub, open canopy forestry and closed canopy forestry. Nest intensity is negatively associated with increasing proportions of grazed land. Conclusion: Hen Harrier avoid grazed areas but are relatively tolerant of other habitat combinations. These findings are supported by previous observations of Hen Harrier habitat use and have implications for the recovery of some Hen Harrier SPA populations and future forest management. Open canopy forest and forest mosaics could potentially be incorporated into landscape-scale conservation plans for Hen Harriers using the population in Mull as an example
- …