1,206 research outputs found

    Propagule pressure hypothesis not supported by an 80-year experiment on woody species invasion

    Get PDF
    Ecological filters and availability of propagules play key roles structuring natural communities. Propagule pressure has recently been suggested to be a fundamental factor explaining the success or failure of biological introductions. We tested this hypothesis with a remarkable data set on trees introduced to Isla Victoria, Nahuel Huapi National Park, Argentina. More than 130 species of woody plants, many known to be highly invasive elsewhere, were introduced to this island early in the 20th century, as part of an experiment to test their suitability as commercial forestry trees for this region. We obtained detailed data on three estimates of propagule pressure (number of introduced individuals, number of areas where introduced, and number of years during which the species was planted) for 18 exotic woody species. We matched these data with a survey of the species and number of individuals currently invading the island. None of the three estimates of propagule pressure predicted the current pattern of invasion. We suggest that other factors, such as biotic resistance, may be operating to determine the observed pattern of invasion, and that propagule pressure may play a relatively minor role in explaining at least some observed patterns of invasion success and failure

    How environmental managers perceive and approach the issue of invasive species: the case of Japanese knotweed s.l. (Rhône River, France)

    Get PDF
    We would like to thank Springer for publishing our article. The final publication is available at http://link.springer.com/article/10.1007%2Fs10530-015-0969-1International audienceStudying the perceptions of stakeholders or interested parties is a good way to better understand behaviours and decisions. This is especially true for the management of invasive species such as Japanese knotweed s.l. This plant has spread widely in the Rhône basin, where significant financial resources have been devoted to its management. However, no control technique is recognized as being particularly effective. Many uncertainties remain and many documents have been produced by environmental managers to disseminate current knowledge about the plant and its management. This article aims at characterizing the perceptions that environmental managers have of Japanese knotweed s.l. A discourse analysis was conducted on the printed documentation produced about Japanese knotweed s.l. by environmental managers working along the Rhône River (France). The corpus was both qualitatively and quantitatively analysed. The results indicated a diversity of perceptions depending on the type of environmental managers involved, as well as the geographicalareas and scales on which they acted. Whereas some focused on general knowledge relating to the origins and strategies of colonization, others emphasized the diversity and efficacy of the prospective eradication techniques. There is a real interest in implementing targeted actions to meet local issues. To do so, however, these issues must be better defined. This is a challenging task, as it must involve all types of stakeholders

    Origin and history of Phoxinus (Cyprinidae) introductions in the Douro basin (Iberian Peninsula): an update inferred from genetic data

    Get PDF
    The number of non-native freshwater fishes in the Iberian Peninsula has been greatly increasing. In this study, individuals of the genus Phoxinus were detected in 18 out of 138 stream sites sampled across the Douro Basin in 2017 and 2018. A total of 26 individuals were barcoded using partial cytochrome c oxidase subunit I (COI) and cytochrome b (cytb) genes for species identification and determination of geographical origin. Molecular data provided the first record of a second Phoxinus species in western Douro (Portugal, Iberian Peninsula), with haplotypes closely matching those found in the Charente River (southern France). This species is suspected to be a recent introduction associated with the use of minnows as live bait by freshwater anglers, which was facilitated by human movements between France and Portugal. Individuals from watercourses in eastern Douro (Spain) were genetically assigned to Phoxinus bigerri, an introduced species previously known for that region, which confirms reports of introduction events from Ebro to Douro Basin probably also related to freshwater angling and facilitated by geographic proximity. The potential ecological impacts of this genus in the region are unknown and need further investigation.We acknowledge Fernando Teixeira, Fernando Miranda, Mario Ferreira, Sara Carona, Jose Pedro RamiAo and Francisco Carvalho for the valuable assistance during fieldwork. We specially thank Maria Filomena MagalhAes for previous fruitful discussions and logistic support. We are grateful to Matthias F. Geiger and Andrea Corral Lou for facilitating genetic data and coordinates of sampling sites. Finally, we appreciate the comments of the three anonymous reviewers that improved the quality of the manuscript. AFF and AGR were supported by the project FRESHING founded by the Portuguese Foundation for Science and Technology (FCT) and COMPETE (PTDC/AAGMAA/2261/2014 - POCI-01-0145-FEDER-356016824). FMSM was supported by the FCT PhD grant SFRH/BD/104703/2014. This study was conducted as part of the projects FRESHING and FRESHCO. The latter is also supported by FCT and COMPETE (PTDC/AGR-FOR/1627/2014 - 04/SAICT/2015) and UID/AGR/04033/2019. Logistic support was also facilitated by the ENVMETAGEN - Capacity Building at InBIO for Research and Innovation Using Environmental Metagenomics project at CIBIO laboratories (668981; EUH2020-WIDESPREAD-2014-2)

    Social–ecological mismatches create conservation challenges in introduced species management

    Get PDF
    This is the final version. Available from the Ecological Society of America via the DOI in this recordIntroduced species can have important effects on the component species and processes of native ecosystems. However, effective introduced species management can be complicated by technical and social challenges. We identify “social–ecological mismatches” (that is, differences between the scales and functioning of interacting social and ecological systems) as one such challenge. We present three case studies in which mismatches between the organization and functioning of key social and ecological systems have contributed to controversies and debates surrounding introduced species management and policy. We identify three common issues: social systems and cultures may adapt to a new species’ arrival at a different rate than ecosystems; ecological impacts can arise at one spatial scale while social impacts occur at another; and the effects of introduced species can spread widely, whereas management actions are constrained by organizational and/or political boundaries. We propose strategies for collaborative knowledge building and adaptive management that may help address these challenges

    Improving understanding of the functional diversity of fisheries by exploring the influence of global catch reconstruction

    Get PDF
    Functional diversity is thought to enhance ecosystem resilience, driving research focused on trends in the functional composition of fisheries, most recently with new reconstructions of global catch data. However, there is currently little understanding of how accounting for unreported catches (e.g. small-scale and illegal fisheries, bycatch and discards) influences functional diversity trends in global fisheries. We explored how diversity estimates varied among reported and unreported components of catch in 2010, and found these components had distinct functional fingerprints. Incorporating unreported catches had little impact on global-scale functional diversity patterns. However, at smaller, management-relevant scales, the effects of incorporating unreported catches were large (changes in functional diversity of up to 46%). Our results suggest there is greater uncertainty about the risks to ecosystem integrity and resilience from current fishing patterns than previously recognized. We provide recommendations and suggest a research agenda to improve future assessments of functional diversity of global fisheries

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Four priority areas to advance invasion science in the face of rapid environmental change

    Get PDF
    Unprecedented rates of introduction and spread of non-native species pose burgeoning challenges to biodiversity, natural resource management, regional economies, and human health. Current biosecurity efforts are failing to keep pace with globalization, revealing critical gaps in our understanding and response to invasions. Here, we identify four priority areas to advance invasion science in the face of rapid global environmental change. First, invasion science should strive to develop a more comprehensive framework for predicting how the behavior, abundance, and interspecific interactions of non-native species vary in relation to conditions in receiving environments and how these factors govern the ecological impacts of invasion. A second priority is to understand the potential synergistic effects of multiple co-occurring stressors— particularly involving climate change—on the establishment and impact of non-native species. Climate adaptation and mitigation strategies will need to consider the possible consequences of promoting non-native species, and appropriate management responses to non-native species will need to be developed. The third priority is to address the taxonomic impediment. The ability to detect and evaluate invasion risks is compromised by a growing deficit in taxonomic expertise, which cannot be adequately compensated by new molecular technologies alone. Management of biosecurity risks will become increasingly challenging unless academia, industry, and governments train and employ new personnel in taxonomy and systematics. Fourth, we recommend that internationally cooperative biosecurity strategies consider the bridgehead effects of global dispersal networks, in which organisms tend to invade new regions from locations where they have already established. Cooperation among countries to eradicate or control species established in bridgehead regions should yield greater benefit than independent attempts by individual countries to exclude these species from arriving and establishing

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Facilitation and Competition among Invasive Plants: A Field Experiment with Alligatorweed and Water Hyacinth

    Get PDF
    Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX) is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant) decreased establishment of new water hyacinth (free-floating plant) patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown), is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may influence local population dynamics of each group and thus overall invasion pressure in this watershed
    corecore