42 research outputs found

    Meta-GWAS identifies the heritability of acute radiation-induced toxicities in head and neck cancer

    Get PDF
    Background and purpose: We aimed to the genetic components and susceptibility variants associated with acute radiation-induced toxicities (RITs) in patients with head and neck cancer (HNC). Materials and methods: We performed the largest meta-GWAS of seven European cohorts (n = 4,042). Patients were scored weekly during radiotherapy for acute RITs including dysphagia, mucositis, and xerostomia. We analyzed the effect of variants on the average burden (measured as area under curve, AUC) per each RIT, and standardized total average acute toxicity (STATacute) score using a multivariate linear regression. We tested suggestive variants (p < 1.0x10-5) in discovery set (three cohorts; n = 2,640) in a replication set (four cohorts; n = 1,402). We meta-analysed all cohorts to calculate RITs specific SNP-based heritability, and effect of polygenic risk scores (PRSs), and genetic correlations among RITS. Results: From 393 suggestive SNPs identified in discovery set; 37 were nominally significant (preplication < 0.05) in replication set, but none reached genome-wide significance (pcombined < 5 × 10-8). In-silico functional analyses identified “3â€Č-5'-exoribonuclease activity” (FDR = 1.6e-10) for dysphagia, “inositol phosphate-mediated signalling” for mucositis (FDR = 2.20e-09), and “drug catabolic process” for STATacute (FDR = 3.57e-12) as the most enriched pathways by the RIT specific suggestive genes. The SNP-based heritability (±standard error) was 29 ± 0.08 % for dysphagia, 9 ± 0.12 % (mucositis) and 27 ± 0.09 % (STATacute). Positive genetic correlation was rg = 0.65 (p = 0.048) between dysphagia and STATacute. PRSs explained limited variation of dysphagia (3 %), mucositis (2.5 %), and STATacute (0.4 %). Conclusion: In HNC patients, acute RITs are modestly heritable, sharing 10 % genetic susceptibility, when PRS explains < 3 % of their variance. We identified numerus suggestive SNPs, which remain to be replicated in larger studies

    Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation

    Full text link
    Tools capable of measuring binding affinities as well as amenable to downstream sequencing analysis are needed for study of DNA-protein interaction, particularly in discovery of new DNA sequences with affinity to diverse targets. Asymmetrical flow field-flow fractionation (AF4) is an open-channel separation technique that eliminates interference from column packing to the non-covalently bound complex and could potentially be applied for study of macromolecular interaction. The recovery and elution behaviors of the poly(dA)n strand and aptamers in AF4 were investigated. Good recovery of ssDNAs was achieved by judicious selection of the channel membrane with consideration of the membrane pore diameter and the radius of gyration (Rg) of the ssDNA, which was obtained with the aid of a Molecular Dynamics tool. The Rg values were also used to assess the folding situation of aptamers based on their migration times in AF4. The interactions between two ssDNA aptamers and their respective protein components were investigated. Using AF4, near-baseline resolution between the free and protein-bound aptamer fractions could be obtained. With this information, dissociation constants of ∌16nM and ∌57nM were obtained for an IgE aptamer and a streptavidin aptamer, respectively. In addition, free and protein-bound IgE aptamer was extracted from the AF4 eluate and amplified, illustrating the potential of AF4 in screening ssDNAs with high affinity to targets. Our results demonstrate that AF4 is an effective tool holding several advantages over the existing techniques and should be useful for study of diverse macromolecular interaction systems

    Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation

    No full text
    RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of RNA—in particular the nonhelical regions—is still difficult to predict. Knowledge-based potentials have proven efficient in protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for structure refinement and/or molecular dynamics simulations

    Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding

    No full text
    Riboswitches are gene-regulating RNAs that are usually found in the 5â€Č-untranslated regions of messenger RNA. As the sugar-phosphate backbone of RNA is highly negatively charged, the folding and ligand-binding interactions of riboswitches are strongly dependent on the presence of cations. Using small angle X-ray scattering (SAXS) and hydroxyl radical footprinting, we examined the cation dependence of the different folding stages of the glycine-binding riboswitch from Vibrio cholerae. We found that the partial folding of the tandem aptamer of this riboswitch in the absence of glycine is supported by all tested mono- and divalent ions, suggesting that this transition is mediated by nonspecific electrostatic screening. Poisson–Boltzmann calculations using SAXS-derived low-resolution structural models allowed us to perform an energetic dissection of this process. The results showed that a model with a constant favorable contribution to folding that is opposed by an unfavorable electrostatic term that varies with ion concentration and valency provides a reasonable quantitative description of the observed folding behavior. Glycine binding, on the other hand, requires specific divalent ions binding based on the observation that Mg2+, Ca2+, and Mn2+ facilitated glycine binding, whereas other divalent cations did not. The results provide a case study of how ion-dependent electrostatic relaxation, specific ion binding, and ligand binding can be coupled to shape the energetic landscape of a riboswitch and can begin to be quantitatively dissected

    Evaluating mixture models for building RNA knowledge-based potentials.

    Get PDF
    International audienceRibonucleic acid (RNA) molecules play important roles in a variety of biological processes. To properly function, RNA molecules usually have to fold to specific structures, and therefore understanding RNA structure is vital in comprehending how RNA functions. One approach to understanding and predicting biomolecular structure is to use knowledge-based potentials built from experimentally determined structures. These types of potentials have been shown to be effective for predicting both protein and RNA structures, but their utility is limited by their significantly rugged nature. This ruggedness (and hence the potential's usefulness) depends heavily on the choice of bin width to sort structural information (e.g. distances) but the appropriate bin width is not known a priori. To circumvent the binning problem, we compared knowledge-based potentials built from inter-atomic distances in RNA structures using different mixture models (Kernel Density Estimation, Expectation Minimization and Dirichlet Process). We show that the smooth knowledge-based potential built from Dirichlet process is successful in selecting native-like RNA models from different sets of structural decoys with comparable efficacy to a potential developed by spline-fitting - a commonly taken approach - to binned distance histograms. The less rugged nature of our potential suggests its applicability in diverse types of structural modeling

    Clustering to identify RNA conformations constrained by secondary structure

    No full text
    RNA often folds hierarchically, so that its sequence defines its secondary structure (helical base-paired regions connected by single-stranded junctions), which subsequently defines its tertiary fold. To preserve base-pairing and chain connectivity, the three-dimensional conformations that RNA can explore are strongly confined compared to when secondary structure constraints are not enforced. Using three examples, we studied how secondary structure confines and dictates an RNA’s preferred conformations. We made use of Macromolecular Conformations by SYMbolic programming (MC-Sym) fragment assembly to generate RNA conformations constrained by secondary structure. Then, to understand the correlations between different helix placements and orientations, we robustly clustered all RNA conformations by employing unique methods to remove outliers and estimate the best number of conformational clusters. We observed that the preferred conformation (as judged by largest cluster size) for each type of RNA junction molecule tested is consistent with its biological function. Further, the improved quality of models in our pruned datasets facilitates subsequent discrimination using scoring functions based either on statistical analysis (knowledge based) or experimental data
    corecore