123 research outputs found

    Evaporation waves in superheated dodecane

    Get PDF
    We have observed propagating adiabatic evaporation waves in superheated liquid dodecane, C_(12)H_(26). Experiments were performed with a rapid decompression apparatus at initial temperatures of 180–300°C. Saturated dodecane in a tube was suddenly depressurized by rupturing a diaphragm. Motion pictures and still photographic images, and pressure and temperature data were obtained during the evaporation event that followed depressurization. Usually, a front or wave of evaporation started at the liquid free surface and propagated into the undisturbed regions of the metastable liquid. The evaporation wave front moved with a steady mean velocity but the front itself was unstable and fluctuating in character. At low superheats, no waves were observed until a threshold superheat was exceeded. At moderate superheats, subsonic downstream states were observed. At higher superheats, the downstream flow was choked, corresponding to a Chapman–Jouguet condition. At the most extreme superheat tested, a vapour content of over 90% was estimated from the measured data, indicating a nearly complete evaporation wave. Our results are interpreted by modelling the evaporation wave as a discontinuity, or jump, between a superheated liquid state and a two-phase liquid–vapour downstream state. Reasonable agreement is found between the model and observations; however, there is a fundamental indeterminacy that prevents the prediction of the observed wave speeds

    COMPARISON BETWEEN SOLAR THERMAL-POWERED ABSORPTION REFRIGERATION CYCLE AND PHOTOVOLTAIC-POWERED COOLING TECHNOLOGIES APPLIED TO DATA CENTERs

    Get PDF
    The air conditioning system of a Data Center is a great challenge for mechanical engineers. At the same time, it is fundamental for computer safety, it is a great energy consumer. Considering that, the present work carried out an analysis in which a solar-powered absorption refrigeration cycle system is combined with a conventional electrical chiller system. The proposed system also introduces the use of PV panels to generate electricity to power the electric chiller. A decision algorithm was developed based on local solar parametric data and cooling demand. A case study was analyzed for a typical data center located in the city of SĂŁo Paulo, Brazil. Electrical specific installed power demands of 0.5, 1.0, 2.0, 4.0, and 8.0 kW/mÂČ at half and total load were studied. Local solar irradiation and temperature indexes were based on the data obtained from ASHRAE [1]. The results show that, for a typical year, the absorption solar system performs better than the photovoltaic system in most cases (0.5, 1.0, 4.0, and 8.0 kW/mÂČ), except when the baseline of the installation operates near the optimum point of the consumption curve of the chiller, which occurs at 2 kW/mÂČ. Finally, the study shows that air conditioning systems powered by solar energy are a great alternative to reduce the energy consumption and operational costs of a Data Center

    A simple impedance method for determining ethanol and regular gasoline mixtures mass contents

    Get PDF
    Abstract A simple electric impedance sensor embedded in ethanol and regular gasoline blends for determining mass ratios was built and tested in the present work. It was carried out a quantitative evaluation of mixtures for several fuel mass ratios in the temperature range of K10 to 40 8C. A non-linear dimensionless electrical conductivity-fuel mass ratio correlation was obtained for a 0-100% ethanol mass content in gasoline. Tests at different temperatures showed that the temperature had an important influence over the mixture bulk conductivity and sensor signal. This work was carried out following the Brazilian automotive industry trend of using ethanol-gasoline mixtures at any proportion to power passenger automobile engines.

    Evaporation waves in superheated dodecane

    Full text link

    Biofilm Localization in the Vertical Wall of Shaking 96-Well Plates

    Get PDF
    Microtiter plates with 96 wells are being increasingly used for biofilm studies due to their high throughput, low cost, easy handling, and easy application of several analytical methods to evaluate different biofilm parameters. These methods provide bulk information about the biofilm formed in each well but lack in detail, namely, regarding the spatial location of the biofilms. This location can be obtained by microscopy observation using optical and electron microscopes, but these techniques have lower throughput and higher cost and are subjected to equipment availability. This work describes a differential crystal violet (CV) staining method that enabled the determination of the spatial location of Escherichia coli biofilms formed in the vertical wall of shaking 96-well plates. It was shown that the biofilms were unevenly distributed on the wall with denser cell accumulation near the air-liquid interface. The results were corroborated by scanning electron microscopy and a correlation was found between biofilm accumulation and the wall shear strain rates determined by computational fluid dynamics. The developed method is quicker and less expensive and has a higher throughput than the existing methods available for spatial location of biofilms in microtiter plates

    Unrevealing the interactive effects of climate change and oil contamination on lab-simulated estuarine benthic communities

    Get PDF
    There is growing concern that modifications to the global environment such as ocean acidification and increased ultraviolet radiation may interact with anthropogenic pollutants to adversely affect the future marine environment. Despite this, little is known about the nature of the potential risks posed by such interactions. Here, we performed a multifactorial microcosm experiment to assess the impact of ocean acidification, ultraviolet radiation B (UV-B) and oil hydrocarbon contamination on sediment chemistry, the microbial community (composition and function) and biochemical marker response of selected indicator species. We found that increased ocean acidification and oil contamination in the absence of UV-B will significantly alter bacterial composition by, among other changes, greatly reducing the relative abundance of Desulfobacterales, known to be important oil hydrocarbon degraders. Along with changes in bacterial composition, we identified concomitant shifts in the composition of aromatic hydrocarbons in the sediment and an increase in oxidative stress effects on our indicator species. Interestingly, our study identifies UV-B as a critical component in the interaction between these factors, since its presence alleviates harmful effects caused by the combination of reduced pH and oil pollution. The model system used here shows that the interactive effect of reduced pH and oil contamination can adversely affect the structure and functioning of sediment benthic communities, with the potential to exacerbate the toxicity of oil hydrocarbons in marine ecosystems

    Dynamics of a Dual SARS-CoV-2 Lineage Co-Infection on a Prolonged Viral Shedding COVID-19 Case: Insights into Clinical Severity and Disease Duration

    Get PDF
    A few molecularly proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases of symptomatic reinfection are currently known worldwide, with a resolved first infection followed by a second infection after a 48 to 142-day intervening period. We report a multiple-component study of a clinically severe and prolonged viral shedding coronavirus disease 2019 (COVID-19) case in a 17-year-old Portuguese female. She had two hospitalizations, a total of 19 RT-PCR tests, mostly positive, and criteria for releasing from home isolation at the end of 97 days. The viral genome was sequenced in seven serial samples and in the diagnostic sample from her infected mother. A human genome-wide array (>900 K) was screened on the seven samples, and in vitro culture was conducted on isolates from three late samples. The patient had co-infection by two SARS-CoV-2 lineages, which were affiliated in distinct clades and diverging by six variants. The 20A lineage was absolute at the diagnosis (shared with the patient's mother), but nine days later, the 20B lineage had 3% frequency, and two months later, the 20B lineage had 100% frequency. The 900 K profiles confirmed the identity of the patient in the serial samples, and they allowed us to infer that she had polygenic risk scores for hospitalization and severe respiratory disease within the normal distributions for a Portuguese population cohort. The early-on dynamic co-infection may have contributed to the severity of COVID-19 in this otherwise healthy young patient, and to her prolonged SARS-CoV-2 shedding profile.The authors acknowledge the support of the i3S Scientific Platforms BioSciences Screening and Genomics, members of the national infrastructure PPBI-Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122), PT-OPENSCREEN, GenomePT project (POCI-01-0145-FEDER-022184)

    Beyond faith: Biomolecular evidence for changing urban economies in multi‐faith medieval Portugal

    Get PDF
    During the Middle Ages, Portugal witnessed unprecedented socioeconomic and religious changes under transitioning religious political rule. The implications of changing ruling powers for urban food systems and individual diets in medieval Portugal is poorly understood. This study aimed to elucidate the dietary impact of the Islamic and Christian conquests.info:eu-repo/semantics/publishedVersio
    • 

    corecore