411 research outputs found

    The Cocoon Nebula and its ionizing star: do stellar and nebular abundances agree?

    Full text link
    (Abridged) Main sequence massive stars embedded in an HII region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula, a close-by Galactic HII region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to perform a detailed comparison of nebular and stellar abundances in the same Galactic HII region. We investigate the chemical content of O, N and S in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum and a detailed spectroscopic analysis of its ionizing B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines (CELs) and optical recombination lines in photoionized nebulae. We collect spatially resolved spectroscopy of the Cocoon nebula and a high resolution optical spectrum of its ionizing star. Standard nebular techniques are used to compute the physical conditions and gaseous abundances of O, N and S. We perform a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. The Cocoon nebula and its ionizing star, located at a distance of 800+-80 pc, have a very similar chemical composition as the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighbourhood as derived from the study of the local cold-gas ISM. The comparison of stellar and nebular CELs abundances in the Cocoon nebula indicates that O and N gas+dust nebular values are in better agreement with stellar ones assuming small temperature fluctuations, of the order of those found in the Orion nebula.Comment: Accepted for publication in A&A. 13 pages, 7 tables and 6 figure

    Carbon and oxygen in HII regions of the Magellanic Clouds: abundance discrepancy and chemical evolution

    Full text link
    We present C and O abundances in the Magellanic Clouds derived from deep spectra of HII regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m VLT. The sample comprises 5 HII regions in the Large Magellanic Cloud (LMC) and 4 in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of CII and OII in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O^2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other HII regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects, but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O vs. O/H and comparing with the results of HII regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.Comment: Accepted for publication in MNRAS, 17 pages, 11 figures, 8 table

    A female burial with grave goods at the Roman villa of Almenara de Adaja (Valladolid)

    Get PDF
    Recent works in an area placed North from the pars urbana of the late imperial roman villa at Almenara de Adaja (Valladolid, Spain) have uncovered a female burial with grave goods. These finds suggest the likely situation of a necropolis corresponding to the villa lifetime period. We study the artifacts found in the burial. Results of an analysis on the content of a ceramic vessel found there are also given. This finding complements the available data on the distribution and organization of contemporary habitat and adds up to the known information on cemeteries dating from this time period in the Spanish north inner plateau.Recientes excavaciones efectuadas en un sector de este yacimiento, al norte del edificio de la pars urbana bajoimperial, nos han permitido documentar un enterramiento femenino con ajuar que pone de manifiesto la probable ubicación de la necrópolis coetánea de la villa. Se estudian los integrantes del ajuar y se añaden los resultados del análisis del contenido de un recipiente cerámico del mismo. El hallazgo complementa los datos disponibles sobre la distribución y organización de los diferentes elementos que conforman el hábitat de la época y viene a sumarse a los conocidos sobre las necrópolis de este periodo en la Meseta

    Physical Conditions in Barnard's Loop, Components of the Orion-Eridanus Bubble, and Implications for the WIM Component of the ISM

    Get PDF
    We have supplemented existing spectra of Barnard's Loop with high accuracy spectrophotometry of one new position. Cloudy photoionization models were calculated for a variety of ionization parameters and stellar temperatures and compared with the observations. After testing the procedure with recent observations of M43, we establish that Barnard's Loop is photoionized by four candidate ionizing stars, but agreement between the models and observations is only possible if Barnard's Loop is enhanced in heavy elements by about a factor of 1.4. Barnard's Loop is very similar in properties to the brightest components of the Orion-Eridanus Bubble and the Warm Ionized Medium (WIM). We are able to establish models that bound the range populated in low-ionization color-color diagrams (I([SII])/I(H{\alpha}) versus I([NII])/I(H{\alpha})) using only a limited range of ionization parameters and stellar temperatures. Previously established variations in the relative abundance of heavy elements render uncertain the most common method of determining electron temperatures for components of the Orion-Eridanus Bubble and the WIM based on only the I([NII])/I(H{\alpha}) ratio, although we confirm that the lowest surface brightness components of the WIM are on average of higher electron temperature. The electron temperatures for a few high surface brightness WIM components determined by direct methods are comparable to those of classical bright H II regions. In contrast, the low surface brightness HII regions studied by the Wisconsin H{\alpha} Mapper are of lower temperatures than the classical bright HII regions

    Design of Zn-, Cu-, and Fe-Coordination Complexes Confined in a Self-Assembled Nanocage

    Get PDF
    The encapsulation of coordination complexes in a tetragonal prismatic nanocage (1·(BArF)8) built from Zn-porphyrin and macrocyclic Pd-clip-based synthons is described. The functional duality of the guest ligand L1 allows for its encapsulation inside the cage 1·(BArF)8, along with the simultaneous coordination of ZnII, CuII, or FeIII metal ions. Remarkably, the coordination chemistry inside the host–guest adduct L1⊂1·(BArF)8 occurs in both solution solution and solid state. The resulting confined metallocomplexes have been characterized by means of UV-vis, ESI-HRMS, NMR, and EPR techniques. Furthermore, the emission of the Zn-porphyrin fluorophores of 1·(BArF)8 is strongly quenched by the encapsulation of paramagnetic complexes, representing a remarkable example of guest-dependent tuning of the host fluorescence

    Towards OmpSs-2 and OpenACC interoperation

    Get PDF
    The increasing demand in HPC to utilize accelerators has motivated the development of pragma-based directives to target these devices. OmpSs-2 and OpenACC are both directive-based solutions that allow application programmers to utilize accelerators. The two leverage distinct types of parallelism: task parallelism and data parallelism, respectively. Non-trivial scientific applications can benefit from both types of available parallelism. However, the combination of pragma-based models is difficult to coordinate, as both assume full control and are unaware of each other at runtime. We propose an interoperation mechanism to enable novel composability across pragma-based programming models. We study and propose a clear separation of duties and implement our approach by augmenting the OmpSs-2 programming model, compiler and runtime to support OmpSs-2 + OpenACC programmingPeer ReviewedPostprint (author's final draft

    Integral field spectroscopy of selected areas of the Bright Bar and Orion-S cloud in the Orion Nebula

    Full text link
    We present integral field spectroscopy of two selected zones in the Orion Nebula obtained with the Potsdam Multi-Aperture Spectrophotometer (PMAS), covering the optical spectral range from 3500 to 7200 A and with a spatial resolution of 1". The observed zones are located on the prominent Bright Bar and on the brightest area at the northeast of the Orion South cloud, both containing remarkable ionization fronts. We obtain maps of emission line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, which ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [OII] lines used to derive the O+ abundance, and that our nominal values of electron density-derived from the [SII] line ratio-may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of OII in the field at the northeast of the Orion South cloud allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion Nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    The VLT-FLAMES Tarantula Survey XVI. The optical+NIR extinction laws in 30 Doradus and the photometric determination of the effective temperatures of OB stars

    Full text link
    Context: The commonly used extinction laws of Cardelli et al. (1989) have limitations that, among other issues, hamper the determination of the effective temperatures of O and early B stars from optical+NIR photometry. Aims: We aim to develop a new family of extinction laws for 30 Doradus, check their general applicability within that region and elsewhere, and apply them to test the feasibility of using optical+NIR photometry to determine the effective temperature of OB stars. Methods: We use spectroscopy and NIR photometry from the VLT-FLAMES Tarantula Survey and optical photometry from HST/WFC3 of 30 Doradus and we analyze them with the software code CHORIZOS using different assumptions such as the family of extinction laws. Results: We derive a new family of optical+NIR extinction laws for 30 Doradus and confirm its applicability to extinguished Galactic O-type systems. We conclude that by using the new extinction laws it is possible to measure the effective temperatures of OB stars with moderate uncertainties and only a small bias, at least up to E(4405-5495) ~ 1.5 mag.Comment: Accepted for publication in A&A. Revised version corrects language and fixes typos (one of them caught by David Nicholls). Figure 4 has poor quality due to the size restrictions imposed by arXi
    • …
    corecore