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Abstract
The increasing demand in HPC to utilize accelerators has mo-
tivated the development of pragma-based directives to target
these devices. OmpSs-2 and OpenACC are both directive-
based solutions that allow application programmers to utilize
accelerators. The two leverage distinct types of parallelism:
task parallelism and data parallelism, respectively. Non-trivial
scientific applications can benefit from both types of avail-
able parallelism. However, the combination of pragma-based
models is difficult to coordinate, as both assume full control
and are unaware of each other at runtime. We propose an in-
teroperation mechanism to enable novel composability across
pragma-based programming models. We study and propose
a clear separation of duties and implement our approach by
augmenting the OmpSs-2 programming model, compiler and
runtime to support OmpSs-2 + OpenACC programming.

Keywords Programming Productivity, Data-flow Paradigm,
Runtime Scheduling, Code Transformation, Parallelism, GPU

1 Introduction
The OpenACC Standard [6] was introduced in 2011 to ad-
dress many of the above-mentioned limitations and facilitate
the development of heterogeneous applications. OpenACC is
a directive-based programming model that allows compiling
plain C/C++ or Fortran code regions, annotated by the user,
interchangeably targeting different accelerator devices. How-
ever, in the scope of OpenACC, the main (host) part of the
program is running sequentially, while utilization of multiple
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devices, as well as asynchronous execution of device kernels,
comes at the cost of additional programming complexity.

Meanwhile, task-based programming models are receiving
increasing attention for being especially tailored to harness
heterogeneous architectures. Since these models are asyn-
chronous by nature, they inherently overcome the above-
mentioned limitations of OpenACC. One such example is
OmpSs-2 [2], a task-parallel programming model, that aims
to ease the development of parallel programs. Using OmpSs-
2, programmers annotate their programs as a series of tasks
and indicate data dependencies among those. Then, the run-
time system can discover and enable potential parallelism
among the tasks execution. Additionally, it is designed with
heterogeneity in mind, as it can support running tasks based
on different programming models, for instance, CUDA. How-
ever, as the name suggests, OmpSs-2 + CUDA programs
require kernels that will be offloaded to a device to be written
using the CUDA programming model, requiring a substantial
programming effort by developers, breaking the productivity
benefits and performance portability across different architec-
tures offered by pure pragma-based models.

Collaboration between two pragma-based programming
environments is difficult to coordinate effectively, as both as-
sume full control during application execution and are agnos-
tic to each other. We propose a mechanism of inter-operations
across both pragma-based programming models that enables
programmers to compose OmpSs-2 tasks with OpenACC ac-
celerator kernels. Our proposal ensures a clear separation of
duties between the two models, and is implemented by aug-
menting the OmpSs-2 compiler and runtime to support hybrid
OmpSs-2 + OpenACC programming.

2 Background and Motivation
Table 1 exposes limitations that different pragma-based mod-
els suffer from. Currently the most widely available and pop-
ular directive-based parallel programming models lack the
ability to express and manage multi-device asynchronous exe-
cution effectively without a substantial effort from developers.
For example, OpenACC forces the programmer to keep track
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Progr.
Model

Async.
Execution

Pragma
Only

Device
Support

Re-
target

Multi-
Device

OpenMP Manual Yes Yes Yes Manual
OpenACC Manual Yes Yes Yes Manual
OmpSs-2 Auto Yes No No No
OmpSs-2
+CUDA

Auto No Yes No Auto

OmpSs-2
+OpenACC

Auto Yes Yes Yes
Auto +
Affinity

Table 1. Summary of programming models capabilities.

of all asynchronous queues and to be responsible of how code
regions map to GPU stream/queues. OmpSs-2 has the ability
to annotate and schedule asynchronous tasks at an application-
wide scope, but it lacks the capabilities to offload computation
to devices without using low-level languages. OpenMP’s [7]
limited scope and implicit barriers for asynchronous tasks, as
well as the opaqueness of how offloaded tasks are mapped
to asynchronous GPU streams/queues, preclude developers
from effectively scheduling device tasks at application wide
scope. These models also lack the capacity to inter-operate
with each other beyond a superficial level, increasing the pro-
gramming complexity if more than one model is needed or
desired. The goal of this work is to provide an interoperation
mechanism for pragma-based programming languages and at
the same time lower the programming effort needed to target
multi-device systems.

3 OmpSs-2 + OpenACC Interoperation
We propose a hierarchy of programming models where OmpSs-
2 is the “dominant” model, responsible for orchestrating
the program execution. Then, OpenACC, as a supportive
model, can be used to accelerate appropriately-annotated,
computation-heavy, data-parallel regions internally within the
tasks. Our proposal delineates a clear separation of responsi-
bilities for each model.
Device Kernel Execution: The task of targeting data-parallel
kernels to accelerator devices falls on the OpenACC pro-
gramming model. This is accomplished by the programmers’
use of a convenient subset of the OpenACC programming
standard, limited to compute directives. These regions are
processed by an OpenACC compiler.
Data Movement: The responsibility for managing and trans-
ferring data across the host and different number of devices
follows the current general OmpSs-2 implementation deci-
sion and falls on the Unified Memory [3] abstraction layer
for NVIDIA devices. This maintains OmpSs-2’s requirement
for a single address space and simplifies programmability for
application developers, since manual transfer of data is not
needed. This choice features important implications for the
work scheduling heuristics.
Host and Device Work Scheduling: Work scheduling for
both host and device is managed by the OmpSs-2 runtime.
In terms of programmability, application developers only
need to mark which tasks are meant for accelerator devices

Figure 1. Single-GPU benchmarks.

with a new clause. Work scheduling of OpenACC kernels is
performed through source–to–source transformation by the
OmpSs-2 compiler and by the OmpSs-2 runtime by managing
OpenACC device queues.
4 Evaluation
The evaluation was performed on an IBM AC922 cluster
based on POWER9 processors and NVIDIA Volta GPUs [5].
OmpSs-2 official release v2.3 has been extended with the
work proposed in this paper and used for compilation. NVIDIA
HPC SDK 20.11 (with CUDA 10.2) was used for providing
the OpenACC support and native compiler. We present prelim-
inary results on a set of single-device benchmarks that com-
prises: (1) a 2D heat equation solver using an iterative Gauss-
Seidel method in blocks (HEAT) [1]; (2) an NBody bench-
mark simulating dynamic particle systems (NBODY) [1]; and
(3) a SPEC-Accel [4] OpenACC adaptation of the Embar-
rassingly Parallel benchmark from the NAS benchmark suite
(EP). Preliminary benchmarks’ results, shown in Figure 1,
indicate that NBODY and HEAT benefit from the automat-
ically enabled asynchronous execution, showing a speedup
of 15% and 7% respectively, with a single directive addition
in the code. For EP, where each iteration comprises multiple
and increasingly complex kernels inside the OpenACC task
region, resulting in a much coarser-grain approach, there is no
performance benefit; however, it shows that our proposal does
not pose a negative impact on a code that is not inherently
suitable for adaptation.
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