12 research outputs found

    Eciton army ants - umbrella species for conservation in neotropical forests

    Get PDF
    Identification of priority areas for conservation is crucial for the maintenance and protection of biodiversity, particularly in tropical forests where biodiversity continues to be lost at alarming rates. Surveys and research on umbrella species can provide efficient and effective approaches to identify potential areas for conservation at small geographical scales. Army ants of the genus Eciton are keystone species in neotropical forests due to their major role as top predators and due to the numerous vertebrate- and invertebrate associated species that depend upon their colonies for survival. These associates range from the iconic army ant-following birds to a wide range of arthropod groups, some of which have evolved intricate morphological, behavioural and/or chemical strategies to conceal their presence and integrate into the colony life. Furthermore, Eciton colonies require large forested areas that support a diverse leaf litter prey community and several field-based and genetic studies have demonstrated the negative consequences of forest fragmentation for the long-term maintenance of these colonies. Therefore, Eciton species will not only act as umbrella for their associates but also for many other species in neotropical forests, in particular for those that require a large extent of forest. This review summarises past and recent accounts of the main taxonomic groups found associated with Eciton colonies, as well research assessing the impact of forest fragmentation on this army ant, to encourage the adoption of Eciton army ants as umbrella species for the identification of priority areas for conservation and assessments of the effect of disturbance in neotropical forests

    A systematic review of population monitoring studies of sea turtles and its application to conservation

    Get PDF
    Sea turtles are keystone species in marine environments due to their essential role as seagrass grazers and population regulation of jellyfish and sponges in coral reefs. However, due to their predominant presence in coastal areas, sea turtle populations face significant threats due to the impact of human activities. In this systematic review, 655 peer-reviewed publications were ana-lyzed to assess the extent of population monitoring for all seven sea turtle species. The analyses revealed that, although population monitoring studies have increased for sea turtles in the past four decades, these have been biased towards certain species and oceanic regions. Furthermore, sea turtle population monitoring has been undertaken primarily using field-based methods, with satellite tracking and nest surveys being the most commonly used methods; however, the im-plementation of genetic methods for population monitoring has increased since the 2000s. Direct conservation recommendations from this study include the urgent need to establish population monitoring studies in the Critically Endangered Kemp's ridley and hawksbill and the Data Defi-cient flatback. Furthermore, population monitoring programs should be implemented in South-east Asia and Northern and Central Africa, where knowledge on sea turtle populations is still limited. Finally, due to the long-distance movements of sea turtles, we also advocate for interna-tional cooperation and collaboration of local communities to protect these ecologically important and iconic marine species

    Charting a course for genetic diversity in the UN Decade of Ocean Science

    Get PDF
    The health of the world's oceans is intrinsically linked to the biodiversity of the ecosystems they sustain. The importance of protecting and maintaining ocean biodiversity has been affirmed through the setting of the UN Sustainable Development Goal 14 to conserve and sustainably use the ocean for society's continuing needs. The decade beginning 2021-2030 has additionally been declared as the UN Decade of Ocean Science for Sustainable Development. This program aims to maximize the benefits of ocean science to the management, conservation, and sustainable development of the marine environment by facilitating communication and cooperation at the science-policy interface. A central principle of the program is the conservation of species and ecosystem components of biodiversity. However, a significant omission from the draft version of the Decade of Ocean Science Implementation Plan is the acknowledgment of the importance of monitoring and maintaining genetic biodiversity within species. In this paper, we emphasize the importance of genetic diversity to adaptive capacity, evolutionary potential, community function, and resilience within populations, as well as highlighting some of the major threats to genetic diversity in the marine environment from direct human impacts and the effects of global climate change. We then highlight the significance of ocean genetic diversity to a diverse range of socioeconomic factors in the marine environment, including marine industries, welfare and leisure pursuits, coastal communities, and wider society. Genetic biodiversity in the ocean, and its monitoring and maintenance, is then discussed with respect to its integral role in the successful realization of the 2030 vision for the Decade of Ocean Science. Finally, we suggest how ocean genetic diversity might be better integrated into biodiversity management practices through the continued interaction between environmental managers and scientists, as well as through key leverage points in industry requirements for Blue Capital financing and social responsibility.info:eu-repo/semantics/publishedVersio

    Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: current actions and indicators are insufficient

    Get PDF
    20openInternationalInternational coauthor/editorInternational agreements such as the Convention on Biological Diversity (CBD) have committed to conserve, and sustainably and equitably use, biodiversity. The CBD is a vital instrument for global conservation because it guides 195 countries and the European Union in setting priorities and allocating resources, and requires regular reporting on progress. However, the CBD and similar policy agreements have often neglected genetic diversity.openHoban, Sean; Campbell, Catriona D.; da Silva, Jessica M.; Ekblom, Robert; Funk, W. Chris; Garner, Brittany A.; Godoy, José A.; Kershaw, Francine; MacDonald, Anna J.; Mergeay, Joachim; Minter, Melissa; O'Brien, David; Vinas, Ivan Paz; Pearson, Sarah K.; Pérez-Espona, Sílvia; Potter, Kevin M.; Russo, Isa-Rita M.; Segelbacher, Gernot; Vernesi, Cristiano; Hunter, Margaret E.Hoban, S.; Campbell, C.D.; da Silva, J.M.; Ekblom, R.; Funk, W.C.; Garner, B.A.; Godoy, J.A.; Kershaw, F.; Macdonald, A.J.; Mergeay, J.; Minter, M.; O'Brien, D.; Vinas, I.P.; Pearson, S.K.; Pérez-Espona, S.; Potter, K.M.; Russo, I.M.; Segelbacher, G.; Vernesi, C.; Hunter, M.E

    Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe

    No full text
    Susceptibility to prion diseases is largely determined by the sequence of the prion protein gene (PRNP), which encodes the prion protein (PrP). The recent emergence of chronic wasting disease (CWD) in Europe has highlighted the need to investigate PRNP gene diversity in European deer species, to better predict their susceptibility to CWD. Here we report a large genetic survey of six British deer species, including red (Cervus elaphus), sika (Cervus nippon), roe (Capreolus capreolus), fallow (Dama dama), muntjac (Muntiacus reevesii), and Chinese water deer (Hydropotes inermis), which establishes PRNP haplotype and genotype frequencies. Two smaller data sets from red deer in Norway and the Czech Republic are also included for comparison. Overall red deer show the most PRNP variation, with non-synonymous/coding polymorphisms at codons 98, 168, 226 and 247, which vary markedly in frequency between different regions. Polymorphisms P168S and I247L were only found in Scottish and Czech populations, respectively. T98A was found in all populations except Norway and the south of England. Significant regional differences in genotype frequencies were observed within both British and European red deer populations. Other deer species showed less variation, particularly roe and fallow deer, in which identical PRNP gene sequences were found in all individuals analysed. Based on comparison with PRNP sequences of North American cervids affected by CWD and limited experimental challenge data, these results suggest that a high proportion of wild deer in Great Britain may be susceptible to CWD
    corecore