509 research outputs found

    Fly fish growth pattern (Decapterus spp) in Likupang Water, Nort Sulawesi

    Get PDF
    This study was aimed to find out the size distribution of scad (Decapterus spp) caught by Likupang fishermen and to find out theirgrowth patterns. Fish samples were collected by traditional purse seine fishermen in Likupang waters. Total catches were 139 individuals consisting of 89 D. macarellus and 50 D. macrosoma.The former was dominated by size of 19.2-20.6 cm, while the latter was dominated by size of 13.1-14.1 cm. Length-weight relationship analysis showed that the growth patterns of D. macarellus and D. Macrosoma were isometric meaning that the increase in length is consistent with weight gain.Keywords: Likupang, Decapterus spp and growth patternsABSTRAKPenelitian ini bertujuan untuk mengetahui distribusi ukuran ikan layang (Decapterus spp) yang ditangkap oleh nelayan Likupang and untuk menduga pola pertumbuhannya. Sampel ikan diperoleh nelayan tradisional pukat cincin di perairan Likupang.Total hasil tangkapan adalah 139 ekor terdiri dari 89 ekor  D. macarellus dan 50 D. macrosoma. Hasil tangkapan D. macarellus didominasi oleh kelas ukuran 19,2-20,6 cm, sedangkan D. macrosomadidominasi oleh kelas ukuran 13,1-14,1 cm. Analisis hubungan panjang berat menunjukkan bahwa pola pertumbuhan ikan D. macarellusdan D. macrosoma bersifat isometrik yang artinya pertambahan panjang selaras dengan pertambahan berat.Kata kunci: Likupang, Decapterus spp dan Pola pertumbuha

    Revisiting the Rigidly Rotating Magnetosphere model for σ\sigma Ori E - II. Magnetic Doppler imaging, arbitrary field RRM, and light variability

    Full text link
    The initial success of the Rigidly Rotating Magnetosphere (RRM) model application to the B2Vp star sigma OriE by Townsend, Owocki & Groote (2005) triggered a renewed era of observational monitoring of this archetypal object. We utilize high-resolution spectropolarimetry and the magnetic Doppler imaging (MDI) technique to simultaneously determine the magnetic configuration, which is predominately dipolar, with a polar strength Bd = 7.3-7.8 kG and a smaller non-axisymmetric quadrupolar contribution, as well as the surface distribution of abundance of He, Fe, C, and Si. We describe a revised RRM model that now accepts an arbitrary surface magnetic field configuration, with the field topology from the MDI models used as input. The resulting synthetic Ha emission and broadband photometric observations generally agree with observations, however, several features are poorly fit. To explore the possibility of a photospheric contribution to the observed photometric variability, the MDI abundance maps were used to compute a synthetic photospheric light curve to determine the effect of the surface inhomogeneities. Including the computed photospheric brightness modulation fails to improve the agreement between the observed and computed photometry. We conclude that the discrepancies cannot be explained as an effect of inhomogeneous surface abundance. Analysis of the UV light variability shows good agreement between observed variability and computed light curves, supporting the accuracy of the photospheric light variation calculation. We thus conclude that significant additional physics is necessary for the RRM model to acceptably reproduce observations of not only sigma Ori E, but also other similar stars with significant stellar wind-magnetic field interactions.Comment: 16 pages, 17 figures, accepted for publication in MNRA

    Efficient Adaptive Stochastic Collocation Strategies for Advection-Diffusion Problems with Uncertain Inputs

    Full text link
    Physical models with uncertain inputs are commonly represented as parametric partial differential equations (PDEs). That is, PDEs with inputs that are expressed as functions of parameters with an associated probability distribution. Developing efficient and accurate solution strategies that account for errors on the space, time and parameter domains simultaneously is highly challenging. Indeed, it is well known that standard polynomial-based approximations on the parameter domain can incur errors that grow in time. In this work, we focus on advection-diffusion problems with parameter-dependent wind fields. A novel adaptive solution strategy is proposed that allows users to combine stochastic collocation on the parameter domain with off-the-shelf adaptive timestepping algorithms with local error control. This is a non-intrusive strategy that builds a polynomial-based surrogate that is adapted sequentially in time. The algorithm is driven by a so-called hierarchical estimator for the parametric error and balances this against an estimate for the global timestepping error which is derived from a scaling argument.Comment: 29 pages, 14 figure

    Electrochemical Oxidation and Sensing of Methylamine Gas in Room Temperature Ionic Liquids

    Get PDF
    The electrochemical behaviour of methylamine gas in several room temperature ionic liquids (RTILs), [C2mim][NTf2], [C4mim][NTf2], [C6mim][FAP], [C4mpyrr][NTf2], [C4mim][BF4], and [C4mim][PF6] has been investigated on a Pt microelectrode using cyclic voltammetry. A broad oxidation wave at approximately 3 V, two reduction peaks and another oxidation peak was observed. A complicated mechanism is predicted based on the voltammetry obtained, with ammonia gas as a likely by-product. The currents obtained suggest that methylamine has a high solubility in RTILs, which is important for gas sensing applications. The analytical utility of methylamine was then studied in [C4mpyrr][NTf2] and [C2mim][NTf2]. A linear calibration graph with an R2 value of 0.99 and limits of detection of 33 and 34 ppm were obtained respectively, suggesting that RTILs are favourable non-volatile solvents for the electrochemical detection of highly toxic methylamine gas

    Refined saddle-point preconditioners for discretized Stokes problems

    Get PDF
    This paper is concerned with the implementation of efficient solution algorithms for elliptic problems with constraints. We establish theory which shows that including a simple scaling within well-established block diagonal preconditioners for Stokes problems can result in significantly faster convergence when applying the preconditioned MINRES method. The codes used in the numerical studies are available online

    A novel coupler design and analysis with shielding material tests for a CPT system of electric vehicles based on electromagnetic resonant coupling

    Get PDF
    In this paper, a contactless power transfer (CPT) system using a novel geometrically enhanced energy transfer coupler with three different shielding materials has been built and analysed, along with the evaluations from aspects of electromagnetics and RMS power transmitting based on electromagnetic resonant coupling. A CPT system design improvement with the proposed H-shape ferromagnetic cores and the combined semi-enclosed passive electromagnetic shielding methods have been investigated in terms of generated electromagnetic field characteristics, system power transfer ratings, system efficiency optimization and performances of shielding materials. The results have shown that, across the range of operating frequency of the CPT system, aluminium shielding as a metallic material method could deliver better overall CPT system performance than other two ferromagnetic materials, steel 1010 and ferrite. In addition, the coupler prototype design limitations, misalignment tolerance and the passive shielding design considerations including distance between windings and inner surfaces of shielding shells have been discussed

    The MiMeS Project: Magnetism in Massive Stars

    Full text link
    The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration among the foremost international researchers of the physics of hot, massive stars, with the basic aim of understanding the origin, evolution and impact of magnetic fields in these objects. The cornerstone of the project is the MiMeS Large Program at the Canada-France-Hawaii Telescope, which represents a dedication of 640 hours of telescope time from 2008-2012. The MiMeS Large Program will exploit the unique capabilities of the ESPaDOnS spectropolarimeter to obtain critical missing information about the poorly-studied magnetic properties of these important stars, to confront current models and to guide theory.Comment: 6 pages, 3 figures, proceedings of IAUS 259: Cosmic Magnetic Field

    Revisiting the Rigidly Rotating Magnetosphere model for sigma Ori E. I. Observations and Data Analysis

    Full text link
    We have obtained 18 new high-resolution spectropolarimetric observations of the B2Vp star sigma Ori E with both the Narval and ESPaDOnS spectropolarimeters. The aim of these observations is to test, with modern data, the assumptions of the Rigidly Rotating Magnetosphere (RRM) model of Townsend & Owocki (2005), applied to the specific case of sigma Ori E by Townsend et al. (2005). This model includes a substantially offset dipole magnetic field configuration, and approximately reproduces previous observational variations in longitudinal field strength, photometric brightness, and Halpha emission. We analyze new spectroscopy, including H I, He I, C II, Si III and Fe III lines, confirming the diversity of variability in photospheric lines, as well as the double S-wave variation of circumstellar hydrogen. Using the multiline analysis method of Least-Squares Deconvolution (LSD), new, more precise longitudinal magnetic field measurements reveal a substantial variance between the shapes of the observed and RRM model time-varying field. The phase resolved Stokes V profiles of He I 5876 A and 6678 A lines are fit poorly by synthetic profiles computed from the magnetic topology assumed by Townsend et al. (2005). These results challenge the offset dipole field configuration assumed in the application of the RRM model to sigma Ori E, and indicate that future models of its magnetic field should also include complex, higher-order components.Comment: 13 pages, 8 figures. Accepted for publication in MNRA

    Discovery of a strong magnetic field in the rapidly rotating B2Vn star HR 7355

    Get PDF
    We report the detection of a strong, organized magnetic field in the helium-variable early B-type star HR 7355 using spectropolarimetric data obtained with ESPaDOnS on the 3.6-m Canada-France-Hawaii Telescope within the context of the Magnetism in Massive Stars (MiMeS) Large Program. HR 7355 is both the most rapidly rotating known main-sequence magnetic star and the most rapidly rotating helium-strong star, with vsin⁥iv \sin i = 300 ±\pm 15 km s−1^{-1} and a rotational period of 0.5214404 ±\pm 0.0000006 days. We have modeled our eight longitudinal magnetic field measurements assuming an oblique dipole magnetic field. Constraining the inclination of the rotation axis to be between 38∘38^{\circ} and 86∘86^{\circ}, we find the magnetic obliquity angle to be between 30∘30^{\circ} and 85∘85^{\circ}, and the polar strength of the magnetic field at the stellar surface to be between 13-17 kG. The photometric light curve constructed from HIPPARCOS archival data and new CTIO measurements shows two minima separated by 0.5 in rotational phase and occurring 0.25 cycles before/after the magnetic extrema. This photometric behavior coupled with previously-reported variable emission of the Hα\alpha line (which we confirm) strongly supports the proposal that HR 7355 harbors a structured magnetosphere similar to that in the prototypical helium-strong star, σ\sigma Ori E.Comment: 6 pages, 3 figures. Accepted for publication in MNRAS Letter
    • 

    corecore