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Abstract. This paper is concerned with the implementation of efficient solution algorithms for
elliptic problems with constraints. We establish theory which shows that including a simple scaling
within well-established block diagonal preconditioners for Stokes problems can result in significantly
faster convergence when applying the preconditioned MINRES method. The codes used in the
numerical studies are available online.
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1. Introduction. The motivation for this work is the development of fast and
robust linear solvers for stabilized mixed approximations of the Stokes equations,

−∇2~v +∇p = ~f,

−∇ · ~v = 0,

together with suitable (Dirichlet, Neumann or mixed) boundary conditions. Stokes
problems typically arise when modelling the flow of a slow-moving fluid such as magma
in the Earth’s mantle, see [16]. In our setting ~v denotes the flow velocity, p is the

pressure, and ~f represents a source term that drives the PDE system. The associated
boundary value problem is usually posed on a bounded domain Ω ⊂ Rd, d ∈ {2, 3}.
Stokes problems also arise in a natural way when the (unsteady) Navier–Stokes equa-
tions are simplified using classical operator splitting techniques, see [5].

We suppose that the boundary value problem is discretized using standard mixed
finite elements. That is we take {φi}i=1,...,nv

as the finite element basis functions for
the velocity components (we assume that the same approximation space is used for
each one), and {ψi}i=1,...,np for the pressure; so that nv and np are the number of ve-
locity and pressure grid nodes respectively. Having set up the associated velocity basis
set (for example, {~φ1, . . . , ~φ2nv

} := {(φ1, 0)T , . . . , (φnv
, 0)T , (0, φ1)T , . . . , (0, φnv

)T } in
two dimensions), the resulting discrete Stokes system is the saddle-point system,[

A BT

B −C

] [
v
p

]
=

[
f
g

]
, (1.1)

where A ∈ Rdnv×dnv is the vector-Laplacian matrix given by

A = [aij ], aij =

∫
Ω

∇~φi : ∇ ~φj dΩ,

and B ∈ Rnp×dnv is the divergence matrix

B = [bij ], bij =

∫
Ω

ψi∇ · ~φj dΩ.
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The vectors v, p are discretized representations of ~v, p, with f , g taking into account
the source term ~f as well as nonhomogeneous boundary conditions. The matrix C
is the zero matrix when a stable finite element discretization (such as the Q2–Q1

Taylor–Hood element) is used, and is the stabilization matrix otherwise. We assume
that A is symmetric positive definite, which is the case when a Dirichlet condition
is imposed on at least part of the boundary. The matrix C is always positive semi-
definite. For consistency with the continuous Stokes system the matrix B should
satisfy 1 ∈ null(BT ) in the case of enclosed flow (see, e.g., [7, Chapter 3]). However,
other vectors may also lie in the nullspace of B; these are artefacts of the discretization,
or arise from the imposition of essential boundary conditions.

The matrix system (1.1) is of classical saddle point form.1 There has been a great
deal of research devoted to solving systems of the form (1.1) using preconditioned
iterative methods; see [2] for a definitive review. This body of work is relevant to any
linear system that is generated by a mixed approximation; see [4, Chapter 3] for a
characterization. To state the key spectral properties, it is useful to let

A =

[
A BT

B −C

]
, (1.2)

where A ∈ Rn×n is symmetric positive definite as above, C ∈ Rm×m is symmetric
positive semidefinite, B ∈ Rm×n with m ≤ n and rank(B) = r ≤ m.2 We suppose
that the (negative) Schur complement of A,

S = BA−1BT + C,

has rank p. Then under these conditions A has n positive eigenvalues, p negative
eigenvalues and m− p zero eigenvalues [2, page 21].

A widely studied block diagonal preconditioner for A is given by

P1 =

[
A 0
0 H

]
, (1.3)

where H ∈ Rn×n is some symmetric positive definite approximation to the Schur
complement S. In the case where H = S and C = 0, it is known that the eigenvalues
of the preconditioned system are given by [13, 15]

λ(P−1
1 A) ∈

{
1,

1

2
(1±

√
5)

}
,

and in the case where the approximation of S (or indeed A) is inexact the precondi-
tioner is frequently found to be extremely effective also. When the condition on C is
weakened to allow the matrix to be symmetric positive semi-definite, it can be shown
that3

λ(P−1
1 A) ∈

[
−1,

1

2
(1−

√
5)

]
∪
[
1,

1

2
(1 +

√
5)

]
.

1We note that the condition C = 0 is often required for a matrix to be defined as a saddle-point
system. In this work we consider the more general definition, where C is required to be symmetric
positive semi-definite.

2In the case of the Stokes discretization, n = dnv and m = np.
3The lower bounds on the positive and negative eigenvalues are shown in [1, Corollary 1], with

the upper bounds on the positive and negative eigenvalues a result of [21, Lemma 2.2].
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In the specific case of the Stokes equations, the approximate Schur complement H is
either the mass matrix associated with the pressure approximation space4

Q = [mp,ij ], mp,ij =

∫
Ω

ψiψj dΩ,

the diagonal of this matrix (see [21, 24]), a lumped version of Q (see [22]), or a
Chebyshev semi-iteration method applied to it (see [11, 12, 26]). We will study a
refined version of the classical preconditioner in this work: instead of taking S ≈ H,
our idea is to incorporate a scaling constant α > 0 and investigate using

Pα =

[
A 0
0 αH

]
(1.4)

as a potential preconditioner for A. Intuitively there is little reason to assume that
the matrix Pα would be a more effective preconditioner than P1: by scaling the Schur
complement we are after all moving the preconditioner ‘further’ from the ideal precon-
ditioner P1. Remarkably, however, we frequently observe a significant improvement
in the Stokes case. This improvement is justified theoretically herein. We also ex-
plain why setting a large value of α can significantly improve the performance of the
iterative solver when a stabilized mixed approximation is employed.

2. Generic spectral equivalence bounds. Extensions to existing eigenvalue
bounds for the Stokes problem are discussed in this section. We analyse the “ideal”
Stokes preconditioner (1.4) first, but we also discuss bounds for efficient “inexact”
variants. These results provide informal motivation for modifying the standard saddle-
point preconditioner for the Stokes equations. Refined eigenvalue estimates applicable
in a Stokes setting are presented in Section 3.

To fix ideas, we characterize the eigenvalues of P−1
α A using the following theorem.

Although the result is simple, and is similar in flavour to results in many other papers
(e.g., [3, 10, 17, 21]), it forms the basis of our analysis and so we provide a proof
for completeness. We highlight that this corresponds to an exact application of the
(1, 1)-block A within the preconditioner. From now on we use the notation (F,G) to
denote the generalized eigenvalue problem Fv = λGv.

Theorem 2.1. Consider the generalized eigenvalue problem

A
[
x
y

]
= λPα

[
x
y

]
, (2.1)

where A, Pα are as in (1.2), (1.4). We have rank(B) = r ≤ m, λ ∈ R, x ∈ Rn and
y ∈ Rm, with x and y not simultaneously zero vectors. Then,

I. λ = 1 with multiplicity n − r, with associated eigenvectors [xT ,0T ]T , x ∈
null(B);

II. λ satisfies −Cy = λαHy with y ∈ null(BT ), in which case the associated
eigenvector of (A,Pα) is [0T ,yT ]T ;

III. or λ = 1
2 (1 − γ) ± 1

2

√
(1− γ)2 + 4δ, where γ = yTCy/yTαHy ≥ 0 and

δ = yT (BA−1BT + C)y/yTαHy > 0, with x 6= 0, y 6∈ null(BT ).

4This follows from expressing the discrete inf-sup stability condition as a generalized eigenvalue
problem, see [7, page 173].
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Proof. Equation (2.1) is equivalent to

BTy = (λ− 1)Ax (2.2)

Bx = (λαH + C)y. (2.3)

We consider Cases I–III separately.
Case I: If λ = 1 then (2.2) implies that BTy = 0, so either y = 0 or y ∈

null(BT ), y 6= 0. If y = 0 then (2.3) implies that Bx = 0, so that x ∈ null(B). There
are n − r linearly independent such vectors. Otherwise, y ∈ null(BT ) with y 6= 0.
However, premultiplying (2.3) by yT then gives that αyTHy = −yTCy. Since H is
positive definite, C is semidefinite and α > 0, this cannot hold. Thus, if λ = 1 then
y = 0. On the other hand, if y = 0 we know from (2.2) that λ = 1, since x 6= 0 and
A is positive definite, so λ = 1 if and only if y = 0. Accordingly, 1 is an eigenvalue of
(A,Pα) with multiplicity n− r and eigenvectors [xT ,0T ]T , x ∈ null(B).

Case II: We now assume that y ∈ null(BT ), y 6= 0. From Case I we know
that this implies that λ 6= 1. Then, (2.2) shows that x = 0. From (2.3) it follows
that λ and y satisfy the generalized eigenvalue problem −Cy = λαHy. Thus y must
simultaneously be an eigenvector of (−C,αH) and in the nullspace of BT . Note that
at most m− r linearly independent vectors satisfy this requirement.

Case III: Otherwise, we know that λ 6= 1, x 6= 0, y 6∈ null(BT ). We can
rearrange (2.2) for x and substitute into (2.3) to give

1

λ− 1
BA−1BTy = (λαH + C)y

or λ2 − (1− γ)λ− δ = 0, the solution of which is

λ =
1

2
(1− γ)± 1

2

√
(1− γ)2 + 4δ

as required.
We see that it is possible to describe the eigenvalues of P−1

α A in terms of A,
B, C, H and α. We also note that when C = 0 (as arises when solving the Stokes
equations using stable finite elements), Case II does not occur and Case III describes
all eigenvalues not equal to 1.

This is a good place to pause to consider the implications of Theorem 2.1 and
the effect of scaling Pα on the eigenvalues of the preconditioned matrix. Trivially,
eigenvalues satisfying Case I are positive (since λ = 1) while any eigenvalues satisfying
Case II are negative, since C is semidefinite and H is positive definite. The remaining
eigenvalues of P−1

α A may be positive, negative or zero and the inertia of P−1
α A must

be the same as that of A. However, because C is semidefinite and A and H are
positive definite, any positive eigenvalue must be at least one, and approaches one as
α increases. On the other hand, negative eigenvalues may approach zero from below,
as α increases, which can have a detrimental affect on the speed of convergence of
preconditioned MINRES. For this reason, it is interesting and important to examine
in greater detail the effect of α on the eigenvalues of P−1

α A.
In the case of the Stokes equations, an effective preconditioner will not invert

the (1, 1)-block exactly as this will be very expensive computationally. However it is

reasonable to assume, as in [21], that an approximation Â may be constructed such
that

g(h) ≤ vTAv

vT Âv
≤ 1, ∀v ∈ Rn\{0}, (2.4)
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for some function g of the mesh parameter h. Applying a tailored multigrid method
to approximate the action of A−1, for example, will achieve this property with g(h)
bounded away from zero independently of h. For stable finite element discretizations
of the Stokes equation there exists an inf-sup constant γ, and a constant Γ resulting
from the boundedness of B, such that

γ2 ≤ pTBA−1BTp

pTQp
≤ Γ2, ∀p ∈ Rm\{0}. (2.5)

For an unstable discretization only the upper bound holds, and a lower bound is
assumed as follows:

γ2 ≤ pT (BA−1BT + C)p

pTQp
,

pTBA−1BTp

pTQp
≤ Γ2, ∀p ∈ Rm\{0}. (2.6)

Furthermore we assume that there exist mesh-independent constants θ, Θ guarantee-
ing the spectral equivalence of Q and our Schur complement approximation H, that
is:

θ2 ≤ pTQp

pTHp
≤ Θ2, ∀p ∈ Rm\{0}. (2.7)

Finally we use the boundedness of C to write

pTCp

pTHp
≤ ∆, ∀p ∈ Rm\{0}, (2.8)

for some mesh-independent constant ∆. The properties assumed above all hold for
the discretizations and approximations we use in this work. We are now in a position
to recall Theorem 2.2 of [21] which in turn provides a bound for the convergence of
preconditioned MINRES, see [25, Theorem 4.1].

Theorem 2.2. For a stable or stabilized discrete Stokes problem (1.1) on a
quasi-uniform sequence of grids, assume that (2.4) holds with g(h) → 0 as h → 0,
that (2.5) or (2.6) holds, and that (2.7), (2.8) are satisfied. Then the eigenvalues of

the preconditioned system P̂−1
1 A, where

P̂1 =

[
Â 0
0 H

]
,

satisfy

λ(P̂−1
1 A) ∈

[
−∆/2−

√
∆2/4 + Γ2Θ2 +O(g(h)),−γθ

√
g(h) +O(g(h))

]
∪
[
g(h), 1/2 +

√
1/4 + Γ2Θ2

]
.

The asymptotic convergence rate of preconditioned MINRES is given by

lim
k→∞

e
1/k
k = 1− g(h)3/4

√
4γθ(

∆ +
√

∆2 + 4Γ2Θ2
)(

1 +
√

1 + 4Γ2Θ2
) +O(g(h)5/4).

(2.9)
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We refer to [25] for discussion of the asymptotic convergence rate for such prob-
lems, and to [23, Chapter 3.2] for a definition and motivation of this quantity. From
(2.9), we observe that the quantity controlling the ‘average’ convergence of the method
is

R1 :=
4γθ(

∆ +
√

∆2 + 4Γ2Θ2
)(

1 +
√

1 + 4Γ2Θ2
) .

That is, if R1 is maximized, then the ‘best’ average convergence is achieved. We note
that ∆ = 0 when no stabilization is applied.

Let us now consider the result of applying the scaled preconditioner given by

P̂α =

[
Â 0
0 αH

]
.

Then within our assumptions (2.7), (2.8) for Theorem 2.2, we must replace θ2, Θ2, ∆
with θ2/α, Θ2/α, ∆/α, in which case the asymptotic convergence rate becomes

Rα :=

4γθ√
α(

∆

α
+

√
∆2

α2
+

4Γ2Θ2

α

)(
1 +

√
1 +

4Γ2Θ2

α

) .
We now examine the behavior of Rα as α ↑ ∞, starting with the case where a stable
discretization is used (i.e. ∆ = 0). In this case

Rα =

4γθ√
α

2ΓΘ√
α

(
1 +

√
1 +

4Γ2Θ2

α

) =

2γθ

ΓΘ

1 +

√
1 +

4Γ2Θ2

α

↑ γθ
ΓΘ

as α ↑ ∞.

In the case where a stabilized mixed method is used (i.e. ∆ 6= 0), we have

Rα =

4γθ√
α(

∆

α
+

√
∆2

α2
+

4Γ2Θ2

α

)(
1 +

√
1 +

4Γ2Θ2

α

)

=
4γθ(

∆√
α

+

√
∆2

α
+ 4Γ2Θ2

)(
1 +

√
1 +

4Γ2Θ2

α

)

↑ 4γθ

2ΓΘ · 2
=

γθ

ΓΘ
as α ↑ ∞.

The above discussion indicates that, for both stable and stabilized discretizations,
it may be highly advantageous to increase the scaling parameter α in Pα. In particular,
increasing α nullifies the effect of the parameter ∆ in the expression for the average
convergence rate. As α ↑ ∞, the predicted rate tends to 1 − g(h)3/4

√
γθ/ΓΘ. Of
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course this argument is a heuristic, as we do not know from this argument how large
α must be to result in substantially faster convergence.

The next section of the paper is the new contribution. Concrete eigenvalue bounds
for preconditioned systems are derived and these are connected to the convergence
observed when solving the system (1.1) with preconditioners Pα and P̂α.

3. Refined estimates for the negative eigenvalues. The bounds in the pre-
vious section suggest that large values of α in Pα will reduce the condition number
of P−1

α A and hence improve the convergence rate of preconditioned MINRES applied
to Stokes problems. Fast convergence of Krylov subspace methods for symmetric in-
definite problems is often attributed to nicely distributed eigenvalues, with clustered
eigenvalues often sought.5 Recalling the remarks after Theorem 2.1, we find that
positive eigenvalues of P−1

α A cluster near one as α increases. Negative eigenvalues
also cluster as α increases, but move towards the origin, which can delay the conver-
gence of Krylov subspace methods. Accordingly, it is instructive to more precisely
characterize the negative eigenvalues, particularly the eigenvalue nearest the origin.

Let us order the eigenvalues of P−1
α A from smallest to largest, so that

λ1 ≤ · · · ≤ λp < 0 < λm+1 ≤ · · · ≤ λm+n,

where p = rank(S) and S is the negative Schur complement of A. (Recall that P−1
α A

has m− p zero eigenvalues.)
We will illustrate the actual behavior of the scaled preconditioner Pα, in which the

(1, 1) block is A and the (2, 2) block is either the pressure mass matrix or its diagonal,
by considering a two-dimensional Stokes problem defined in a square domain. We note
that additional numerical experiments (described in Section 4), that are conducted
with A replaced by a single V-cycle of AMG, show that only λm+1, which takes
values between 0.84 and 0.94, changes significantly when this approximation is made.
Another option is to replace diag(Q), the diagonal of the mass matrix, by lump(Q),
the lumped mass matrix whose entries are the row sums of Q, or by a fixed number
of iterations of Chebyshev semi-iteration. Both approaches cause λ1, λp, λm+1 and
λm+n to better approximate the values obtained when H = Q. The analysis in the
rest of this section could easily be applied to lumped mass matrices also.

As a first step we investigate the extreme nonzero eigenvalues λ1, λp, λm+1 and
λm+n of P−1

α A as α varies, for a cavity problem discretized by Q1–Q1, Q1–P0 and
Q2–Q1 elements. This is a widely considered problem in Stokes flow, which we define
on Ω = [−1, 1]2, with ~f = ~0 and boundary conditions given by

vx = 1− x4, vy = 0, on [−1, 1]× {1},
vx = vy = 0, on ∂Ω\

(
[−1, 1]× {1}

)
,

where ~v = [vx, vy]T . Since the flow is enclosed, the preconditioned system is singular
with a single zero eigenvalue that is associated with a zero velocity and a constant
pressure vector.

Tables 3.1–3.2 verify the asymptotic results for large α just mentioned. We also
note that λp approaches the origin algebraically as α is increased. Other interesting
trends also emerge. One intriguing feature of Q1–Q1 elements is that, when H in Pα is

5Note that, even in exact arithmetic, matrices with tight clusters of eigenvalues do not in general
give the same convergence curve as matrices with distinct eigenvalues located at the cluster centres,
as discussed by Liesen and Strakoš for the Conjugate Gradient method [14, Section 5.6.5].
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Table 3.1
Computed extreme eigenvalues of P−1

α A for the cavity problem, a mesh parameter of 2−5 and
H = diag(Q), the diagonal of the pressure mass matrix.

Q1–Q1 Q1–P0

α λ1 λp λm+1 λm+n λ1 λp λm+1 λm+n

1 −1.1× 100 −2.5× 10−1 1 2.1 −1.3× 100 −2.0× 10−1 1 1.6
2 −6.7× 10−1 −1.3× 10−1 1 1.7 −7.2× 10−1 −1.1× 10−1 1 1.4
3 −5.0× 10−1 −8.3× 10−2 1 1.5 −5.0× 10−1 −7.3× 10−2 1 1.3
4 −4.0× 10−1 −6.3× 10−2 1 1.4 −3.9× 10−1 −5.5× 10−2 1 1.2
5 −3.3× 10−1 −5.0× 10−2 1 1.3 −3.1× 10−1 −4.5× 10−2 1 1.2
6 −2.9× 10−1 −4.2× 10−2 1 1.3 −2.7× 10−1 −3.8× 10−2 1 1.1
7 −2.5× 10−1 −3.6× 10−2 1 1.3 −2.3× 10−1 −3.2× 10−2 1 1.1
8 −2.3× 10−1 −3.1× 10−2 1 1.2 −2.0× 10−1 −2.8× 10−2 1 1.1
9 −2.1× 10−1 −2.8× 10−2 1 1.2 −1.8× 10−1 −2.5× 10−2 1 1.1
10 −1.9× 10−1 −2.5× 10−2 1 1.2 −1.6× 10−1 −2.3× 10−2 1 1.1
20 −1.0× 10−1 −1.3× 10−2 1 1.1 −8.5× 10−2 −1.2× 10−2 1 1
40 −5.3× 10−2 −6.3× 10−3 1 1.1 −4.3× 10−2 −5.8× 10−3 1 1
60 −3.6× 10−2 −4.2× 10−3 1 1 −2.9× 10−2 −3.9× 10−3 1 1
80 −2.7× 10−2 −3.1× 10−3 1 1 −2.2× 10−2 −2.9× 10−3 1 1
100 −2.2× 10−2 −2.5× 10−3 1 1 −1.7× 10−2 −2.3× 10−3 1 1

Q2–Q1

α λ1 λp λm+1 λm+n

1 −1.1× 100 −1.1× 10−1 1 2.1
2 −6.5× 10−1 −6.0× 10−2 1 1.7
3 −4.9× 10−1 −4.1× 10−2 1 1.5
4 −3.9× 10−1 −3.1× 10−2 1 1.4
5 −3.3× 10−1 −2.5× 10−2 1 1.3
6 −2.8× 10−1 −2.1× 10−2 1 1.3
7 −2.5× 10−1 −1.8× 10−2 1 1.2
8 −2.2× 10−1 −1.6× 10−2 1 1.2
9 −2.0× 10−1 −1.4× 10−2 1 1.2
10 −1.8× 10−1 −1.3× 10−2 1 1.2
20 −9.9× 10−2 −6.3× 10−3 1 1.1
40 −5.1× 10−2 −3.2× 10−3 1 1.1
60 −3.5× 10−2 −2.1× 10−3 1 1
80 −2.6× 10−2 −1.6× 10−3 1 1
100 −2.1× 10−2 −1.3× 10−3 1 1

the diagonal of the pressure mass matrix, the eigenvalue λp seems to be −0.25/α. On
the other hand, when H is the full pressure mass matrix and α is large the eigenvalue
λp is almost (although not exactly) the same for all three element types.

Our next task is to develop good bounds for λp and explain some of the phenomena
we observe, so that we might choose values of α that results in fast convergence of
Krylov methods applied to Stokes problems. To do this we examine both Case II and
Case III eigenvalues from Theorem 2.1.

3.1. Case III eigenvalues. We begin by studying Case III eigenvalues, which
will help us explain why λp is similar for different elements when the full pressure mass
matrix Q is used for H. In particular, we show that a simple upper bound from [21]
on the negative Case III eigenvalues is remarkably tight. Although the analysis we
provide is for the situation H = Q, we also give numerical results for H = diag(Q),
and note that the extension of the analysis to this case, or to lumped mass matrices,
is straightforward albeit less informative.
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Table 3.2
Computed extreme eigenvalues of P−1

α A for the cavity problem, a mesh parameter of 2−5 and
H = Q, the pressure mass matrix.

Q1–Q1 Q1–P0

α λ1 λp λm+1 λm+n λ1 λp λm+1 λm+n

1 −1.1× 100 −1.9× 10−1 1 1.6 −1.3× 100 −2.0× 10−1 1 1.6
2 −5.5× 10−1 −1.0× 10−1 1 1.4 −7.2× 10−1 −1.1× 10−1 1 1.4
3 −3.8× 10−1 −7.1× 10−2 1 1.3 −5.0× 10−1 −7.3× 10−2 1 1.3
4 −2.9× 10−1 −5.4× 10−2 1 1.2 −3.9× 10−1 −5.5× 10−2 1 1.2
5 −2.3× 10−1 −4.4× 10−2 1 1.2 −3.1× 10−1 −4.5× 10−2 1 1.2
6 −2.0× 10−1 −3.7× 10−2 1 1.1 −2.7× 10−1 −3.8× 10−2 1 1.1
7 −1.7× 10−1 −3.2× 10−2 1 1.1 −2.3× 10−1 −3.2× 10−2 1 1.1
8 −1.5× 10−1 −2.8× 10−2 1 1.1 −2.0× 10−1 −2.8× 10−2 1 1.1
9 −1.3× 10−1 −2.5× 10−2 1 1.1 −1.8× 10−1 −2.5× 10−2 1 1.1
10 −1.2× 10−1 −2.2× 10−2 1 1.1 −1.6× 10−1 −2.3× 10−2 1 1.1
20 −6.1× 10−2 −1.1× 10−2 1 1 −8.5× 10−2 −1.2× 10−2 1 1
40 −3.1× 10−2 −5.7× 10−3 1 1 −4.3× 10−2 −5.8× 10−3 1 1
60 −2.1× 10−2 −3.8× 10−3 1 1 −2.9× 10−2 −3.9× 10−3 1 1
80 −1.5× 10−2 −2.8× 10−3 1 1 −2.2× 10−2 −2.9× 10−3 1 1
100 −1.2× 10−2 −2.3× 10−3 1 1 −1.7× 10−2 −2.3× 10−3 1 1

Q2–Q1

α λ1 λp λm+1 λm+n

1 −6.2× 10−1 −1.8× 10−1 1 1.6
2 −3.7× 10−1 −9.5× 10−2 1 1.4
3 −2.6× 10−1 −6.5× 10−2 1 1.3
4 −2.1× 10−1 −4.9× 10−2 1 1.2
5 −1.7× 10−1 −4.0× 10−2 1 1.2
6 −1.5× 10−1 −3.3× 10−2 1 1.1
7 −1.3× 10−1 −2.9× 10−2 1 1.1
8 −1.1× 10−1 −2.5× 10−2 1 1.1
9 −1.0× 10−1 −2.3× 10−2 1 1.1
10 −9.2× 10−2 −2.0× 10−2 1 1.1
20 −4.8× 10−2 −1.0× 10−2 1 1
40 −2.4× 10−2 −5.2× 10−3 1 1
60 −1.6× 10−2 −3.4× 10−3 1 1
80 −1.2× 10−2 −2.6× 10−3 1 1
100 −9.9× 10−3 −2.1× 10−3 1 1

Recall from Theorem 2.1 that these negative Case III eigenvalues are

λ =
1

2
(1− γ)− 1

2

√
(1− γ)2 + 4δ,

where γ = yTCy/yTαHy ≥ 0, δ = yT (BA−1BT + C)y/yTαHy > 0 and y 6∈
null(BT ).

Now, λ is a monotonically decreasing function of γ, with γ ∈ [0, 1]. Since Q1–Q1

and Q1–P0 elements satisfy the ideal stabilization property (see [7, Section 3.3.2]),
γ ≤ 1 for both element types. Additionally, γ = 0 for Q2–Q1 elements (since C = 0
for stable elements). Thus, for all three elements we obtain the bound in Lemma 2.3
of [21]:

λp ≤
1

2
− 1

2

√
1 + 4δmin, (3.1)

where

δmin = min
y∈Rm

y 6∈null(BT )

yT (BA−1BT + C)y

yTαHy
.
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Table 3.3
Values of δmin for different problems and element types when the mesh parameter is 2−5.

Q1–Q1 Q1–P0 Q2–Q1

Regularized cavity 2.386× 10−1 2.339× 10−1 2.074× 10−1

Obstacle 8.776× 10−3 8.771× 10−3 8.692× 10−3

Table 3.4
Largest negative eigenvalue (λp) of P−1

α A, and bound (3.1) for the cavity problem, a mesh
parameter of 2−5 and H = diag(Q), the diagonal of the pressure mass matrix.

Q1–Q1 Q2–Q1

α λp Bound λp Bound
1 −2.5× 10−1 −6.0× 10−2 −1.1× 10−1 −3.1× 10−2

2 −1.3× 10−1 −3.1× 10−2 −6.0× 10−2 −1.6× 10−2

3 −8.3× 10−2 −2.1× 10−2 −4.1× 10−2 −1.0× 10−2

4 −6.2× 10−2 −1.6× 10−2 −3.1× 10−2 −7.9× 10−3

5 −5.0× 10−2 −1.2× 10−2 −2.5× 10−2 −6.3× 10−3

6 −4.2× 10−2 −1.0× 10−2 −2.1× 10−2 −5.3× 10−3

7 −3.6× 10−2 −8.9× 10−3 −1.8× 10−2 −4.5× 10−3

8 −3.1× 10−2 −7.8× 10−3 −1.6× 10−2 −4.0× 10−3

9 −2.8× 10−2 −7.0× 10−3 −1.4× 10−2 −3.5× 10−3

10 −2.5× 10−2 −6.3× 10−3 −1.3× 10−2 −3.2× 10−3

20 −1.2× 10−2 −3.1× 10−3 −6.3× 10−3 −1.6× 10−3

40 −6.2× 10−3 −1.6× 10−3 −3.2× 10−3 −7.9× 10−4

60 −4.2× 10−3 −1.1× 10−3 −2.1× 10−3 −5.3× 10−4

80 −3.1× 10−3 −7.9× 10−4 −1.6× 10−3 −4.0× 10−4

100 −2.5× 10−3 −6.3× 10−4 −1.3× 10−3 −3.2× 10−4

Under mild assumptions that are certainly met for our problems, δmin is bounded
away from zero by a constant that depends on the element type but not on the mesh
parameter h [7, Section 3.5]. Values of δmin are given in Table 3.3 for the cavity
problem and the obstacle problem introduced in Section 4.

Tables 3.4 and 3.5 show the bound (3.1) and corresponding value of λp for the
cavity problem. We see that the bound is pessimistic when H = diag(Q) (with
the exception of Q1–P0 elements for which diag(Q) = Q). The bound is similarly
pessimistic when diag(Q) is replaced by the lumped mass matrix lump(Q), which is
unsurprising since lump(Q) = 2.25 diag(Q). However, the bound is very accurate for
all three elements when the full pressure mass matrix is used in Pα.

Differences between the values of λp for different elements are clearly reflected in
differences between the corresponding values of δmin. Thus, it seems that when H
in (1.4) is the full pressure mass matrix, the eigenvalue λp is determined mainly by this
constant, which varies only mildly between the different element types, and which is
bounded away from zero independently of h. Qualitatively similar results are observed
for the obstacle problem described in Section 4. Importantly, by examining (3.1) it
seems that when H is the pressure mass matrix we can accurately bound λp as α
increases, which allows us to control the magnitude of this eigenvalue.

3.2. Case II eigenvalues. Although the eigenvalue bound (3.1) is descriptive
when we use the full pressure mass matrix in Pα, it is rather pessimistic when the
diagonal of the pressure mass matrix is used instead (except for Q1–P0 elements). It
would be useful to have an alternative means of quantifying λp when H = diag(Q) for
Q1–Q1 and Q2–Q1 elements. The latter case appears to be difficult. However, we see
from Table 3.1 that for Q1–Q1 elements λp behaves like −0.25/α. We show in the rest
of this section that this is indeed the case, and that this eigenvalue is associated with
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Table 3.5
Largest negative eigenvalue (λp) of P−1

α A, and bound (3.1) for the cavity problem, a mesh
parameter of 2−5 and H = Q, the pressure mass matrix.

Q1–Q1 Q1–P0 Q2–Q1

α λp Bound λp Bound λp Bound
1 −1.9× 10−1 −1.9× 10−1 −2.0× 10−1 −2.0× 10−1 −1.8× 10−1 −1.8× 10−1

2 −1.0× 10−1 −1.0× 10−1 −1.1× 10−1 −1.1× 10−1 −9.5× 10−2 −9.5× 10−2

3 −7.1× 10−2 −7.1× 10−2 −7.3× 10−2 −7.3× 10−2 −6.5× 10−2 −6.5× 10−2

4 −5.4× 10−2 −5.4× 10−2 −5.5× 10−2 −5.5× 10−2 −4.9× 10−2 −4.9× 10−2

5 −4.4× 10−2 −4.4× 10−2 −4.5× 10−2 −4.5× 10−2 −4.0× 10−2 −4.0× 10−2

6 −3.7× 10−2 −3.7× 10−2 −3.8× 10−2 −3.8× 10−2 −3.3× 10−2 −3.3× 10−2

7 −3.2× 10−2 −3.1× 10−2 −3.2× 10−2 −3.2× 10−2 −2.9× 10−2 −2.9× 10−2

8 −2.8× 10−2 −2.8× 10−2 −2.8× 10−2 −2.8× 10−2 −2.5× 10−2 −2.5× 10−2

9 −2.5× 10−2 −2.5× 10−2 −2.5× 10−2 −2.5× 10−2 −2.3× 10−2 −2.3× 10−2

10 −2.2× 10−2 −2.2× 10−2 −2.3× 10−2 −2.3× 10−2 −2.0× 10−2 −2.0× 10−2

20 −1.1× 10−2 −1.1× 10−2 −1.2× 10−2 −1.2× 10−2 −1.0× 10−2 −1.0× 10−2

40 −5.7× 10−3 −5.6× 10−3 −5.8× 10−3 −5.8× 10−3 −5.2× 10−3 −5.2× 10−3

60 −3.8× 10−3 −3.8× 10−3 −3.9× 10−3 −3.9× 10−3 −3.4× 10−3 −3.4× 10−3

80 −2.8× 10−3 −2.8× 10−3 −2.9× 10−3 −2.9× 10−3 −2.6× 10−3 −2.6× 10−3

100 −2.3× 10−3 −2.3× 10−3 −2.3× 10−3 −2.3× 10−3 −2.1× 10−3 −2.1× 10−3

Case II in Theorem 2.1. Since it is possible to characterize the Case II eigenvalues
for the full pressure mass matrix, and for Q1–P0 elements, we extend our analysis
to these cases for completeness. Although we examine the case H = diag(Q) here,
the same analysis could be performed for the lumped mass matrix H = lump(Q).
This is particularly easy for the Q1 pressure mass matrices considered here for which
lump(Q) = 2.25 diag(Q).

Case II eigenvalues satisfy

−Cy = λαHy, y ∈ null(BT ).

Our approach for this analysis is to propose a basis for null(BT ), and then determine
whether these basis vectors are eigenvectors of the generalized problem (−C,αH). To
do so we require certain notation, and details of the finite element assembly process,
that we describe here. We assume that there are nx elements in the x direction
and ny elements in the y direction, so that the total number of elements is nel =
nxny. Although we restrict our attention to square domains for simplicity, the same
methodology can be used to analyse more complicated domains, as we discuss at the
end of this section.

Let Ck ∈ R4×4, Qk ∈ R4×4 and diag(Qk) ∈ R4×4, k = 1, . . . , nel, be the element
matrices that are assembled to form C, Q and diag(Q). Additionally, let L ∈ RN×m
be the connectivity matrix that maps local pressure degrees of freedom on element k
to the global pressure degrees of freedom 1, . . . ,m, where N = 4nel. Then

C = LT diag(Ck)L, Q = LT diag(Qk)L, diag(Q) = LT diag(diag(Qk))L. (3.2)

We now specify the Q1–Q1 connectivity matrix itself. With nodes and elements
numbered as in Figure 3.1, each column of L can be succinctly represented using
Kronecker products as ei ⊗ ej ⊗ es, where ei ∈ Rny , ej ∈ Rnx and es ∈ R4 are the
ith, jth and sth unit vectors of the appropriate dimension. The number of elements
in a given column depends on whether the corresponding node lies on a corner, a
side or in the interior of the domain, and there are nine distinct cases that we now
describe.
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1 2 3 nx

nx + 1 2nx

(1, 1) (nx + 1, 1)

(1, ny + 1) (nx + 1, ny + 1)

1 2

34

Fig. 3.1. Diagram of mesh and nodes (left), and node numbering within each element (right).

Consider the (i, j)th node, where the node number is as in Figure 3.1. Then the
corresponding column of L is

`k =



e1 ⊗ e1 ⊗ e1 i = 1, j = 1,

e1 ⊗
[
ei−1 ⊗ e2 + ei ⊗ e1

]
i = 2, . . . , nx, j = 1,

e1 ⊗ enx
⊗ e2 i = nx + 1, j = 1,

ej−1 ⊗ e1 ⊗ e4 + ej ⊗ e1 ⊗ e1 i = 1, j = 2, . . . , ny,

ej−1 ⊗
[
ei−1 ⊗ e3 + ei ⊗ e4

]
+ej ⊗

[
ei−1 ⊗ e2 + ei ⊗ e1

]
i = 2, . . . , nx, j = 2, . . . , ny,

ej−1 ⊗ enx ⊗ e3 + ej ⊗ enx ⊗ e2 i = nx + 1, j = 2, . . . , ny,

eny
⊗ e1 ⊗ e4 i = 1, j = ny + 1,

eny
⊗
[
ei−1 ⊗ e3 + ei ⊗ e4

]
i = 2, . . . , nk, j = ny + 1,

eny
⊗ enx

⊗ e3 i = nx + 1, j = ny + 1,

(3.3)

with k = (j − 1)(nx + 1) + i, i = 1, . . . , nx + 1 and j = 1, . . . , ny + 1. Since L has one
element per row,

L1m = 1N , (3.4)

that is, the connectivity matrix maps the constant vector to one of larger dimension
(cf. Lemma 3.2 below).

3.2.1. Q1–Q1 elements. We begin with Q1–Q1 elements. Following the imple-
mentation in the Incompressible Flow & Iterative Solver Software (IFISS) [8, 9, 20],
we employ the stabilization approach of Dohrmann and Bochev [6] (see also [7, Section
3.3.2]), who define the stabilization matrix on the kth element to be

Ck = Qk − qqT |�k|, (3.5)
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where q = [ 1
4 ,

1
4 ,

1
4 ,

1
4 ]T and |�k| is the element area. With this choice it follows

from (3.2) that the stabilization matrix C satisfies

C = LT diag(Qk − qqT |�k|)L = Q− |�k|wwT ,

where w = 1
4L

T1N . It is straightforward to compute that null(Ck) = span{14}.
Since the connectivity matrix maps the constant vector to one of larger dimension
(see (3.4)), and C satisfies (3.2), it follows that null(C) = span{1m}.

In the Dorhmann and Botchev strategy the Case II eigenvalues satisfy −Cy =
λαHy with y ∈ null(BT ). Without any modifications to B in (1.2) for the incor-
poration of essential boundary conditions, null(BT ) = span{±1m}, where ±1 is the
vector of alternating signs, i.e., (±1)k = (−1)k+1 [18, 19]. Imposing certain boundary
conditions may increase the dimension of null(BT ).

To show that we have a Case II eigenvalue, we must be able to show that ±1 is
an eigenvector of −Cy = λα diag(Q)y or, equivalently, of

0 = LT (Ck + λα diag(Qk))Ly.

Since the eigenvalues of (−C,α diag(Q)) are closely related to those of (−Ck, α diag(Qk)),
we first determine the eigenvalues and eigenvectors of this small problem.

Lemma 3.1. The eigenpairs of (−Ck, α diag(Qk)) are (θs, ṽs), s = 1, . . . , 4 where

Θ =


θ1

θ2

θ3

θ4

 =


0
− 0.25

α
− 0.75

α
− 0.75

α


and

V =
[
ṽ1 ṽ2 ṽ3 ṽ4

]
=


1 −1 1 1
1 1 1 −1
1 −1 −1 −1
1 1 −1 1

 .
Proof. The result is obtained by straightforward computation.
The eigenpair (θ2, ṽ2) seems promising since θ2 = −0.25/α matches the observed

value of λp in Table 3.1, while ṽ2 = ±14. To find the corresponding eigenpairs of
(−C,α diag(Q)) we now extend ṽs, s = 1, . . . , 4, to vectors of length m via

vs = (LTL)−1LT v̂s, (3.6)

where

v̂s =


1ny ⊗ 1nx ⊗ ṽ1 = 1 s = 1,

±1ny
⊗±1nx

⊗ ṽ2 = ±1 s = 2,

±1ny
⊗ 1nx

⊗ ṽ3 s = 3,

1ny
⊗±1nx

⊗ ṽ4 s = 4.

(3.7)

Note that

v̂s = [ε1ṽ
T
s , ε2ṽ

T
s , . . . , εnel

ṽTs ]T , (3.8)
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with εk ∈ {−1, 1}, k = 1, . . . , nel.
To proceed we require a technical result that shows that the v̂s lie in range(L).
Lemma 3.2. The vectors v̂s, s = 1, . . . , 4 in (3.7) satisfy v̂s ∈ range(L).
Proof. We must be able to combine columns `p of L in (3.3) to get v̂s, s = 1, . . . , 4.

It is straightforward, although rather cumbersome, to show that

v̂1 =

ny+1∑
j=1

nx+1∑
i=1

`(j−1)(nx+1)+i, v̂2 =

ny+1∑
j=1

nx+1∑
i=1

(−1)i+j`(j−1)(nx+1)+i,

v̂3 =

ny+1∑
j=1

nx+1∑
i=1

(−1)i+1`(j−1)(nx+1)+i, v̂4 =

ny+1∑
j=1

nx+1∑
i=1

(−1)j+1`(j−1)(nx+1)+i,

which proves the result.
Since L(LTL)−1LT is an orthogonal projector onto range(L), a consequence of

Lemma 3.2 is that

Lvs = L(LTL)−1LT v̂s = v̂s, s = 1, . . . , 4. (3.9)

Importantly, this means that Lv2 = v̂2 = ±1 ∈ null(BT ).
The final step is to combine (3.9) with Lemma 3.1 to show that v̂2 is indeed an

eigenvector of (−C,α diag(Q)), with corresponding eigenvalue −0.25/α.
Lemma 3.3. The pairs (λs,vs), s = 1, . . . , 4 satisfy −Cvs = λsα diag(Q)vs,

where λs are as in Lemma 3.1 and vs are defined by (3.6).
Proof. From (3.2) we have that Cvs+λsα diag(Q)vs = LT (Ck+λsα diag(Qk))Lvs.

Thus, using (3.8), (3.9) and Lemma 3.1, we find that

Cvs + λsα diag(Qk)vs

= LT


Ck + λsα diag(Qk)

Ck + λsα diag(Qk)
. . .

Ck + λsα diag(Qk)



ε1ṽs
ε2ṽs

...
εnel

ṽs


= 0,

which shows that (λs,vs) are eigenpairs of (−C,α diag(Q)).
Returning to Theorem 2.1, we see that the vectors vs, s = 1, . . . , 4 are candi-

dates for y in Case II. However, only v2 lies in null(BT ) before B is modified to
accommodate any essential boundary conditions. Thus, λ = −0.25 and y = v2 sat-
isfy the conditions for Case II and this is precisely the eigenvalue λp that we observe
in Table 3.1. Of course, certain boundary conditions may increase the dimension of
null(BT ), in which case v1, v3 and/or v4 may lie in the nullspace of this modified
matrix. For example, for the channel problem all four vectors lie in the nullspace.

For completeness we now consider the case where H = Q, the pressure mass
matrix, which can be analysed in a very similar manner to H = diag(Q) above. If
−Cv = λαQv then 0 = LT (Ck + λαQk)Lv. The four eigenpairs of (−Ck, αQk) are
(0, ṽ1) and (−1/α, ṽs), s = 2, 3, 4. A result similar to Lemma 3.3 then shows that
(0,v1), (−1/α,vs), s = 2, 3, 4, are eigenpairs of (−C,αQ).

As above, before B is modified to accommodate boundary conditions, null(BT ) =
span{v2} and the eigenvalue −1/α (with eigenvector v2) is guaranteed to be an eigen-
value of P−1

f A. However, v1, v3 and/or v4 may lie in the nullspace of the modified
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matrix. We stress that the difference between this and the diagonal pressure mass ma-
trix approximation is that λp 6= −1/α. Instead λp is as in Table 3.2, and is bounded
by (3.1).

3.2.2. Q1–P0 elements. We now turn our attention to Q1–P0 elements which
have one pressure degree of freedom per element, located at the element centre. A
consequence is that the pressure mass matrix is diagonal, so that Q = diag(Q) =
|�k|I, where |�k| is the area of a single element. For these elements BT has full
rank except in the case of Dirichlet boundary conditions, in which case null(BT ) =
span{v1,v2} where v1 and v2 are as in (3.7).

The stabilization matrix we choose is that in [7, Section 3.3.2], which we briefly
describe here. Consider a macroelement comprising a 2× 2 patch of elements. Then
the kth macroelement stabilization matrix is

Ck = |�k|


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2

 ,
Qk = |�k|I, and the connectivity matrix that maps pressure degrees of freedom
on a macroelement to global degrees of freedom is the identity, i.e., L = I. It is
straightforward to compute that (Ck, Qk) has eigenpairs (0, ṽ1), (4, ṽ2), (2, ṽ3) and
(2, ṽ4), where ṽs, s = 1, . . . , 4 are as in Lemma 3.1. Since

Cv − λQv = diag(Ck − λQk)v,

the results of Section 3.2.1 can be applied to show that (0,v1), (4,v2), (2,v3) and
(2,v4) are all eigenpairs of (C,Q). In fact, because C is block diagonal and Q is
diagonal, it is possible to take ej ⊗vs, j = 1, . . . , nel as eigenvectors, where ej ∈ Rnel

is the jth unit vector.

Thus, for problems with purely Dirichlet boundary conditions, v1 and v4 lie
in null(BT ), and both (0,v4) and (1,v1) are Case II eigenpairs. Otherwise, there
are no Case II eigenvalues and all non-unit eigenvalues are described by Case III of
Theorem 2.1.

3.3. Discussion. It is clear that the methodology outlined above could be ap-
plied to non-square domains to ascertain the presence of Case II eigenvalues, although
it may be more difficult to determine the appropriate nullspace vectors [18], and the
connectivity matrix may be more complicated to describe.

As an example of what we might expect for more general domains, we performed
numerical experiments for the L-shaped domain of the backward-facing step prob-
lem in IFISS (see Section 3.1 of [7] for a full problem description). We numerically
verified that when Q1–Q1 elements are used, (−C,α diag(Q)) has eigenpairs (0,v1),
(−0.25/α,v2), (−0.75/α,v3) and (−0.75/α,v4), while (−C,αQ) has eigenpairs (0,v1)
and (−1/α,vs), s = 2, 3, 4, i.e., the same eigenpairs as for the square domain. Since
v2 ∈ null(BT ), −0.25/α is a Case II eigenvalue. Moreover, after boundary conditions
are applied we find that (−0.75/α,v4) is an additional Case II eigenvalue. For Q1–P0

elements we find that (0,v1), (−4/α,v2), (−2/α,v3) and (−2/α,v4) are eigenpairs
of (−C,αQ). However, because this problem has a natural outflow condition there
are no Case II eigenpairs. We note that exactly the same results hold for the obstacle
problem described in the next section.
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Fig. 4.1. Solution plots of velocity ~v and pressure p for the regularized cavity problem.

We conclude this section by summarizing the results obtained thus far. We have
found that increasing the parameter α in Pα results in more clustered eigenvalues of
P−1
α A when solving a range of Stokes problems, and the eigenvalues of the precondi-

tioned system do not rapidly approach zero as α is raised. We therefore recommend
that a moderate scaling parameter is incorporated into a preconditioner for the Stokes
equations. In the next section we will justify this experimentally.

4. Numerical verification. Having motivated the application of scaled saddle-
point preconditioners to Stokes problems, we would like to demonstrate the effect of
such preconditioners on various test problems. To do this we run the preconditioned
Minres algorithm within the IFISS software system [8, 9, 20] in matlab. In partic-
ular, we examine the regularized cavity flow from Section 3, as well as an obstacle
flow problem. The latter problem is posed on the channel Ω = [0, 8] × [−1, 1] with
the square obstacle [7

4 ,
9
4 ]× [− 1

4 ,
1
4 ] removed (see Figure 4.2). No-flow conditions are

applied at the top and bottom walls, and at the obstacle boundary. We impose a
Poiseuille flow condition, that is vx = 1 − y2, vy = 0, on the inflow boundary; we
also specify a natural boundary condition on the outflow boundary. In Figure 4.1 we
present a streamline plot for the velocity solution of the cavity problem, and a plot
of the pressure solution; for these plots we set h = 2−8 (corresponding to the finest
mesh tested). In Figure 4.2 we provide the same plots for the obstacle flow problem,
with h = 2−7.

In Table 4.1 we present iteration numbers for the Minres solution of the regu-
larized cavity problem using stabilized Q1–Q1 elements on a uniform mesh, with a
preconditioned residual norm tolerance of 10−6. Within the preconditioner, we use
one algebraic multigrid (AMG) V-cycle with point damped Gauss-Seidel smoothing

for the matrix Â, and 10 steps of Chebyshev semi-iteration [11, 12, 26] for H. We
present results for different values of the (uniform) mesh parameter h, as well as values
of α within Pα. We observe that when α is increased, the iteration numbers clearly
decrease, and there is hence a considerable benefit to applying the scaled precondi-
tioner. This is observed for all values of mesh parameter tested. We present these
results pictorially in Figure 4.3, illustrating the effect of α for all values of h tested.

In Table 4.3 we present iteration numbers for the solution of the obstacle problem
for a range of finite element discretizations, and a range of preconditioning strategies
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Fig. 4.2. Solution plots of velocity ~v (top) and pressure p (bottom) for the obstacle flow problem.

Table 4.1
Results for the cavity problem solved with Q1–Q1 finite elements, for a range of values of h and α.

h
α 2−2 2−3 2−4 2−5 2−6 2−7 2−8

1 21 31 35 38 40 41 43
2 18 27 30 33 35 36 37
3 18 25 29 31 33 34 36
4 18 25 28 30 32 33 34
5 17 23 28 30 31 33 33
6 17 23 28 30 30 33 33
7 17 23 28 29 31 31 33
8 17 22 26 29 31 32 32
9 17 22 26 29 31 32 32
10 17 22 26 29 31 32 33
20 17 22 27 28 29 31 32
40 17 23 26 29 30 33 32
60 16 23 27 30 31 32 33
80 16 24 28 29 32 33 34
100 16 24 28 29 32 34 32

as presented in Table 4.2. The matrix Â is either taken to be A or an AMG V-cycle
applied to it; the preconditioner H for the Schur complement is either the diagonal of
Q or 10 steps of Chebyshev semi-iteration applied to Q. We highlight that we also ran
the same tests withH = Q, and obtained very similar results as when using Chebyshev
semi-iteration. When Q1–P0 finite elements are used, Q is diagonal, so we only run
the tests for preconditioner options 1 and 3. In all cases the mesh parameter is fixed
as h = 2−7, and different values of α are again taken within Pα. We see that applying
Chebyshev semi-iteration within the Schur complement approximation results in faster
convergence than a diagonal approximation; using AMG to approximate the (1, 1)-
block yields roughly similar convergence as an exact inverse for Q1–Q1 elements, but
higher iteration counts for Q1–P0 and Q2–Q1 elements. Significantly, we once again
observe the advantage of increasing α within the preconditioner—this behavior is
replicated for all preconditioning options tested when stabilized finite elements are
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Fig. 4.3. Representation of the effect of α on the Minres iteration count for the cavity problem.

used. We highlight that each Minres iteration requires the same computational
operations for a given matrix system, and therefore a reduction in the iteration count
results in a corresponding decrease in computing time. In the best case we observe a
reduction of 30% in Minres steps and hence CPU time, when increasing the value of
α for a stabilized problem.

Table 4.2
Different preconditioner options.

Preconditioner
1 Full A, Diagonal of Q
2 Full A, Chebyshev semi-iteration for Q
3 AMG for A, Diagonal of Q
4 AMG for A, Chebyshev semi-iteration for Q

Table 4.3
Results for the obstacle flow problem with h = 2−7 for different preconditioners, and for a range

of α and element types.

Q1–Q1 Q1–P0 Q2–Q1

α 1 2 3 4 1 3 1 2 3 4
1 64 67 67 72 69 77 77 49 89 61
2 61 60 65 64 62 70 75 48 86 60
3 61 55 65 60 59 67 73 48 85 60
4 59 54 63 59 58 66 73 49 83 59
5 59 53 63 57 58 65 71 47 84 60
6 58 52 63 58 56 64 71 47 82 60
7 58 52 63 58 56 64 71 47 83 61
8 57 51 62 57 56 65 70 47 83 61
9 57 51 62 57 55 64 70 47 82 60
10 56 50 62 57 55 64 70 47 82 60
20 56 49 62 59 53 65 68 46 83 62
40 54 48 64 61 52 68 66 45 84 66
60 54 47 65 63 52 69 65 45 87 67
80 52 47 66 64 52 71 65 45 88 69
100 52 47 66 66 52 72 63 45 90 70
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5. Concluding remarks. This work shows that including a simple scaling to
well-established block diagonal preconditioners for Stokes problems can result in sig-
nificantly faster convergence when applying the preconditioned MINRES method. We
demonstrated theoretically why this occurs by analyzing the eigenvalues of the pre-
conditioned matrix P−1

α A. In particular, the positive eigenvalues cluster near 1 as the
scaling parameter is increased, with the negative eigenvalues also clustering and only
approaching 0 slowly. We also show that the performance gains can be significant
(30% reduction in CPU times) if a stabilized mixed approximation method is in use.
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