12,718 research outputs found

    Chiral molecules split light: Reflection and refraction in a chiral liquid

    Get PDF
    A light beam changes direction as it enters a liquid at an angle from another medium, such as air. Should the liquid contain molecules that lack mirror symmetry, then it has been predicted by Fresnel that the light beam will not only change direction, but will actually split into two separate beams with a small difference in the respective angles of refraction. Here we report the observation of this phenomenon. We also demonstrate that the angle of reflection does not equal the angle of incidence in a chiral medium. Unlike conventional optical rotation, which depends on the path-length through the sample, the reported reflection and refraction phenomena arise within a few wavelengths at the interface and thereby suggest a new approach to polarimetry that can be used in microfluidic volumes

    Reproductive Coercion and Relationship Abuse Among Adolescents and Young Women Seeking Care at School Health Centers.

    Get PDF
    ObjectiveTo investigate demographic differences and evaluate how reproductive coercion and relationship abuse influences young females' care-seeking and sexual health behaviors.MethodsWe conducted a secondary analysis of cross-sectional baseline survey data from sexually active female students (aged 14-19 years) who sought care from school health centers. Outcomes included recent (previous 3 months) reproductive coercion, physical or sexual adolescent relationship abuse, and nonpartner sexual violence victimization. Cluster-adjusted χ tests compared demographics and generalized linear mixed models estimated associations among reproductive coercion, adolescent relationship abuse (physical and sexual abuse in romantic relationships), and care-seeking and sexual health behaviors.ResultsOf 550 sexually active high school females, 12% reported recent reproductive coercion and 17% reported physical or sexual adolescent relationship abuse, with no significant demographic differences. Prevalence of recent nonpartner sexual violence was 17%. There were no observed significant differences in care-seeking behaviors among those with recent reproductive coercion compared with those without. Physical or sexual adolescent relationship abuse was associated with increased odds of seeking testing or treatment for sexually transmitted infections (adjusted odds ratio [aOR] 2.08, 95% CI 1.05-4.13). Females exposed to both adolescent relationship abuse and reproductive coercion had higher odds of having a partner who was 5 or more years older (aOR 4.66, 95% CI 1.51-14.4), having two or more recent sexual partners (aOR 3.86, 95% CI 1.57-9.48), and using hormonal contraception only (aOR 3.77, 95% CI 1.09-13.1 vs hormonal methods with condoms).ConclusionAlmost one in eight females experienced recent reproductive coercion. We did not observe significant demographic differences in reproductive coercion. Partner age and number of sexual partners may elevate risk for abusive relationships. Relationship abuse is prevalent among high school students seeking care, with no clear pattern for case identification. By failing to identify factors associated with harmful partner behaviors, our results support universal assessment for reproductive coercion and relationship abuse among high school-aged adolescents, involving education, resources, and harm-reduction counseling to all patients.Clinical trial registrationClinicalTrials.gov, NCT01678378

    Hyperfine Level Splitting for Hydrogen-Like Ions due to Rotation-Spin Coupling

    Full text link
    The theoretical aspects of spin-rotation coupling are presented. The approach is based on the general covariance principle. It is shown that the gyrogravitational ratio of the bare spin-1/2 and the spin-1 particles is equal unity. That is why spin couples with rotation as an ordinary angular momentum. This result is the rigorous substantiation of the cranking model. To observe the phenomenon, the experiment with hydrogen-like ions in a storage ring is suggested. It is found that the splitting of the 12!S1/2,F=1/21 ^2!S_{1/2}, F=1/2 hyperfine state of the 140Pr58+^{140}{\rm Pr}^{58+} and 142Pm60+^{142}{\rm Pm}^{60+} ions circulating in the storage ring ESR in Darmstadt along a helical trajectory is about 4.5 MHz. We argue that such splitting can be experimentally determined by means of the ionic interferometry.Comment: 6 pages, final versio

    Kinetic barriers in RNA unzipping

    Full text link
    We consider a simple model for the unfolding of RNA tertiary structure under dynamic loading. The opening of such a structure is regarded as a two step process, each corresponding to the overcoming of a single energy barrier. The resulting two-barrier energy landscape accounts for the dependence of the unfolding kinetics on the pulling rate. Furthermore at intermediate force, the two barriers cannot be distinguished by the analysis of the opening kinetic, which turns out to be dominated by a single macro-barrier, whose properties depend non-trivially on the two single barriers. Our results suggest that in pulling experiments on RNA molecule containing tertiary structures, the details of the single kinetic barriers can only be obtained using a low pulling rate value, or in the high force regime.Comment: to appear on Eur. Phys. J.

    Image Coaddition with Temporally Varying Kernels

    Full text link
    Large, multi-frequency imaging surveys, such as the Large Synaptic Survey Telescope (LSST), need to do near-real time analysis of very large datasets. This raises a host of statistical and computational problems where standard methods do not work. In this paper, we study a proposed method for combining stacks of images into a single summary image, sometimes referred to as a template. This task is commonly referred to as image coaddition. In part, we focus on a method proposed in previous work, which outlines a procedure for combining stacks of images in an online fashion in the Fourier domain. We evaluate this method by comparing it to two straightforward methods through the use of various criteria and simulations. Note that the goal is not to propose these comparison methods for use in their own right, but to ensure that additional complexity also provides substantially improved performance

    Topological phase for entangled two-qubit states and the representation of the SO(3)group

    Full text link
    We discuss the representation of the SO(3)SO(3) group by two-qubit maximally entangled states (MES). We analyze the correspondence between SO(3)SO(3) and the set of two-qubit MES which are experimentally realizable. As a result, we offer a new interpretation of some recently proposed experiments based on MES. Employing the tools of quantum optics we treat in terms of two-qubit MES some classical experiments in neutron interferometry, which showed the π\pi -phase accrued by a spin-1/21/2 particle precessing in a magnetic field. By so doing, we can analyze the extent to which the recently proposed experiments - and future ones of the same sort - would involve essentially new physical aspects as compared with those performed in the past. We argue that the proposed experiments do extend the possibilities for displaying the double connectedness of SO(3)SO(3), although for that to be the case it results necessary to map elements of SU(2)SU(2) onto physical operations acting on two-level systems.Comment: 25 pages, 9 figure

    A Flux-Limited Sample of z~1 Ly-alpha Emitting Galaxies in the CDFS

    Full text link
    We describe a method for obtaining a flux-limited sample of Ly-alpha emitters from GALEX grism data. We show that the multiple GALEX grism images can be converted into a three-dimensional (two spatial axes and one wavelength axis) data cube. The wavelength slices may then be treated as narrowband images and searched for emission-line galaxies. For the GALEX NUV grism data, the method provides a Ly-alpha flux-limited sample over the redshift range z=0.67-1.16. We test the method on the Chandra Deep Field South field, where we find 28 Ly-alpha emitters with faint continuum magnitudes (NUV>22) that are not present in the GALEX pipeline sample. We measure the completeness by adding artificial emitters and measuring the fraction recovered. We find that we have an 80% completeness above a Ly-alpha flux of 10^-15 erg/cm^2/s. We use the UV spectra and the available X-ray data and optical spectra to estimate the fraction of active galactic nuclei in the selection. We report the first detection of a giant Ly-alpha blob at z<1, though we find that these objects are much less common at z=1 than at z=3. Finally, we compute limits on the z~1 Ly-alpha luminosity function and confirm that there is a dramatic evolution in the luminosity function over the redshift range z=0-1.Comment: 18 pages, in press at The Astrophysical Journa

    The Full Range of Predictions for B Physics From Iso-singlet Down Quark Mixing

    Get PDF
    We extend the range of predictions of the isosinglet (or vector) down quark model to the fully allowed physical ranges, and also update this with the effect of new physics constraints. We constrain the present allowed ranges of sin(2*beta) and sin(2*alpha), gamma, x_s, and A_{B_s}. In models allowing mixing to a new isosinglet down quark (as in E_6) flavor changing neutral currents are induced that allow a Z^0 mediated contribution to B-Bbar mixing and which bring in new phases. In (rho, eta), (x_s, sin(gamma)), and (x_s, A_{B_s}) plots for the extra isosinglet down quark model which are herein extended to the full physical range, we find new allowed regions that will require experiments on sin(gamma) and/or x_s to verify or to rule out an extra down quark contribution.Comment: 13 pages in RevTeX, 7 postscript figure

    The cosmic growth of the active black hole population at 1<z<2 in zCOSMOS, VVDS and SDSS

    Get PDF
    We present a census of the active black hole population at 1<z<2, by constructing the bivariate distribution function of black hole mass and Eddington ratio, employing a maximum likelihood fitting technique. The study of the active black hole mass function (BHMF) and the Eddington ratio distribution function (ERDF) allows us to clearly disentangle the active galactic nuclei (AGN) downsizing phenomenon, present in the AGN luminosity function, into its physical processes of black hole mass downsizing and accretion rate evolution. We are utilizing type-1 AGN samples from three optical surveys (VVDS, zCOSMOS and SDSS), that cover a wide range of 3 dex in luminosity over our redshift interval of interest. We investigate the cosmic evolution of the AGN population as a function of AGN luminosity, black hole mass and accretion rate. Compared to z = 0, we find a distinct change in the shape of the BHMF and the ERDF, consistent with downsizing in black hole mass. The active fraction or duty cycle of type-1 AGN at z~1.5 is almost flat as a function of black hole mass, while it shows a strong decrease with increasing mass at z=0. We are witnessing a phase of intense black hole growth, which is largely driven by the onset of AGN activity in massive black holes towards z=2. We finally compare our results to numerical simulations and semi-empirical models and while we find reasonable agreement over certain parameter ranges, we highlight the need to refine these models in order to match our observations.Comment: 31 pages, 28 figures, accepted for publication in MNRA
    • …
    corecore